論文の概要: Tokyo Kion-On: Query-Based Generative Sonification of Atmospheric Data
- arxiv url: http://arxiv.org/abs/2208.02494v1
- Date: Thu, 4 Aug 2022 06:56:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 13:14:37.669631
- Title: Tokyo Kion-On: Query-Based Generative Sonification of Atmospheric Data
- Title(参考訳): 東京イオンオン:大気データのクエリに基づく生成音化
- Authors: Stefano Kalonaris
- Abstract要約: 東京キオン(きょうとキオン)は、1876年から2021年までの東京の気温の問合せに基づく音化モデルである。
このシステムは、LSTMとして知られる繰り返しニューラルネットワークアーキテクチャを使用して、日本のメロディの小さなデータセットに基づいて訓練され、その大気データに基づいて調整される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Amid growing environmental concerns, interactive displays of data constitute
an important tool for exploring and understanding the impact of climate change
on the planet's ecosystemic integrity. This paper presents Tokyo kion-on, a
query-based sonification model of Tokyo's air temperature from 1876 to 2021.
The system uses a recurrent neural network architecture known as LSTM with
attention trained on a small dataset of Japanese melodies and conditioned upon
said atmospheric data. After describing the model's implementation, a brief
comparative illustration of the musical results is presented, along with a
discussion on how the exposed hyper-parameters can promote active and
non-linear exploration of the data.
- Abstract(参考訳): 環境の懸念が高まる中、データのインタラクティブな表示は、気候変動が地球の生態系の整合性に与える影響を探索し理解するための重要なツールとなっている。
本稿は,1876年から2021年までの東京の気温の問合せに基づく音化モデルである東京イオンオンについて述べる。
このシステムは、LSTMとして知られる繰り返しニューラルネットワークアーキテクチャを使用して、日本のメロディの小さなデータセットに基づいて訓練され、その大気データに基づいて調整される。
モデルの実装を説明した後、音楽結果の簡単な比較図を示し、露出したハイパーパラメータがデータのアクティブかつ非線形な探索をいかに促進できるかについて議論する。
関連論文リスト
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
本研究では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を併用したハイブリッドモデルを提案する。
CNNは空間的特徴抽出に利用され、LSTMは時間的依存を処理し、予測精度と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-19T03:38:53Z) - Stratospheric aerosol source inversion: Noise, variability, and uncertainty quantification [0.0]
本稿では,ベイズ近似誤差を用いた成層圏エアロゾル源インバージョンのためのフレームワークを提案する。
我々はE3SM(Energy Exascale Earth System Model)を用いた特別設計地球モデルシミュレーションを活用する。
データ生成、データ処理、次元削減、演算子学習、ベイズ反転のための包括的なフレームワークについて述べる。
論文 参考訳(メタデータ) (2024-09-10T20:12:36Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Cluster-Segregate-Perturb (CSP): A Model-agnostic Explainability Pipeline for Spatiotemporal Land Surface Forecasting Models [5.586191108738564]
本稿では、LIMEのような摂動に基づく説明可能性手法とPDPのようなグローバルな限界説明可能性の両方から原理を統合するパイプラインを提案する。
提案したパイプラインは,複雑な陸面予測モデルにおける限界感度解析,限界相関解析,ラグ解析などの多様な調査分析の実施を単純化する。
論文 参考訳(メタデータ) (2024-08-12T04:29:54Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
既存の専門家が支配する数値シミュレーションは、地球温暖化や人的活動によって引き起こされる動的変動に追いつかなかった。
1920年から2023年までの世界の海洋脱酸素モデルを再構築するために,最初の深層学習モデルであるOxyGeneratorを提案する。
論文 参考訳(メタデータ) (2024-05-12T09:32:40Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF)は、複数のモードから実際の音響室データをキャプチャする新しいデータセットである。
RAFは密集した室内音響データを提供する最初のデータセットである。
論文 参考訳(メタデータ) (2024-03-27T17:59:56Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Super-Resolution of BVOC Maps by Adapting Deep Learning Methods [17.819699053848197]
生体内揮発性有機化合物(BVOC)は、生物圏-大気相互作用において重要な役割を果たす。
利用可能なほとんどのBVOCデータは、緩くスパースなサンプリンググリッドまたは小さな領域で得られる。
高解像度のBVOCデータは、大気質、大気化学、気候モニタリングなど多くの用途で望ましい。
論文 参考訳(メタデータ) (2023-02-15T10:21:38Z) - Prompt Federated Learning for Weather Forecasting: Toward Foundation
Models on Meteorological Data [37.549578998407675]
地球規模の気候問題に対処するためには、大規模な気象データに基づいて総合的な気象予報を行うための共同プラットフォームを開発する必要がある。
本稿では,複雑な気象データを理解し,天気予報を行う領域にまたがる基礎モデルを構築した。
低リソースセンサの通信と計算の制約を満たすために,新しいプロンプト学習機構が採用された。
論文 参考訳(メタデータ) (2023-01-22T16:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。