論文の概要: Stratospheric aerosol source inversion: Noise, variability, and uncertainty quantification
- arxiv url: http://arxiv.org/abs/2409.06846v1
- Date: Tue, 10 Sep 2024 20:12:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 16:29:39.490799
- Title: Stratospheric aerosol source inversion: Noise, variability, and uncertainty quantification
- Title(参考訳): 成層圏エアロゾル源インバージョン:ノイズ、変動性、不確実性定量化
- Authors: J. Hart, I. Manickam, M. Gulian, L. Swiler, D. Bull, T. Ehrmann, H. Brown, B. Wagman, J. Watkins,
- Abstract要約: 本稿では,ベイズ近似誤差を用いた成層圏エアロゾル源インバージョンのためのフレームワークを提案する。
我々はE3SM(Energy Exascale Earth System Model)を用いた特別設計地球モデルシミュレーションを活用する。
データ生成、データ処理、次元削減、演算子学習、ベイズ反転のための包括的なフレームワークについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stratospheric aerosols play an important role in the earth system and can affect the climate on timescales of months to years. However, estimating the characteristics of partially observed aerosol injections, such as those from volcanic eruptions, is fraught with uncertainties. This article presents a framework for stratospheric aerosol source inversion which accounts for background aerosol noise and earth system internal variability via a Bayesian approximation error approach. We leverage specially designed earth system model simulations using the Energy Exascale Earth System Model (E3SM). A comprehensive framework for data generation, data processing, dimension reduction, operator learning, and Bayesian inversion is presented where each component of the framework is designed to address particular challenges in stratospheric modeling on the global scale. We present numerical results using synthesized observational data to rigorously assess the ability of our approach to estimate aerosol sources and associate uncertainty with those estimates.
- Abstract(参考訳): 成層圏エアロゾルは地球系において重要な役割を担い、数ヶ月から数年の時間スケールで気候に影響を与える。
しかし,火山噴火などの一部観測されたエアロゾル噴射の特性は,不確実性から推定されている。
本稿では,ベイズ近似による背景エアロゾルノイズと地球系の内部変動を考慮した成層圏エアロゾル源インバージョンのためのフレームワークを提案する。
我々はE3SM(Energy Exascale Earth System Model)を用いて特別に設計された地球モデルシミュレーションを利用する。
データ生成、データ処理、次元縮小、演算子学習、ベイズ変換のための包括的なフレームワークが提示され、このフレームワークの各コンポーネントは、グローバルスケールにおける成層圏モデリングにおける特定の課題に対処するように設計されている。
本研究では, 合成観測データを用いて, エアロゾル源の推定と不確かさの関連性について, 厳密な評価を行う。
関連論文リスト
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Cluster-Segregate-Perturb (CSP): A Model-agnostic Explainability Pipeline for Spatiotemporal Land Surface Forecasting Models [5.586191108738564]
本稿では、LIMEのような摂動に基づく説明可能性手法とPDPのようなグローバルな限界説明可能性の両方から原理を統合するパイプラインを提案する。
提案したパイプラインは,複雑な陸面予測モデルにおける限界感度解析,限界相関解析,ラグ解析などの多様な調査分析の実施を単純化する。
論文 参考訳(メタデータ) (2024-08-12T04:29:54Z) - Global atmospheric data assimilation with multi-modal masked autoencoders [20.776143147372427]
EarthNetはデータ同化のためのマルチモーダル基礎モデルである。
衛星観測のみから、地球規模のギャップに満ちた大気状態を予測することを学ぶ。
大気の3次元温度と湿度の地球規模の0.16度の再分析データセットを生成する。
論文 参考訳(メタデータ) (2024-07-16T13:15:51Z) - Variable importance measure for spatial machine learning models with application to air pollution exposure prediction [2.633085745593072]
本研究の目的は, 大気汚染の健康影響を学習する能力を最大限に活用するために, データのない場所での被験者の大気汚染の予測を行うことである。
これらの課題を、米国国家PM2.5亜種規制データの硫黄(S)と、シアトルの交通関連大気汚染データセットの超微粒子(UFP)の2つのデータセットで解決する。
私たちの重要な貢献は、幅広いモデルの解釈可能かつ同等の尺度に導かれる、変数の重要度に対する一対一のアプローチである。
論文 参考訳(メタデータ) (2024-06-04T05:51:36Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
本稿では,Variデータ同化とディープラーニングの概念に基づくフレームワークを提案する。
この枠組みは、海面風速に関する高解像度のリッチインタイムを回復するために応用される。
論文 参考訳(メタデータ) (2023-12-14T13:40:39Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - Earthformer: Exploring Space-Time Transformers for Earth System
Forecasting [27.60569643222878]
本研究では,地球系予測のための時空間変圧器である地球変圧器を提案する。
Transformerは、Cuboid Attentionという、汎用的で柔軟で効率的な時空アテンションブロックに基づいている。
降水量計に関する2つの実世界のベンチマークとエルニーノ/サウス・テンポシエーションの実験は、アースフォーマーが最先端のパフォーマンスを達成したことを示している。
論文 参考訳(メタデータ) (2022-07-12T20:52:26Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Unsupervised Regionalization of Particle-resolved Aerosol Mixing State
Indices on the Global Scale [6.118807550188815]
エアロゾル混合状態は大気中のエアロゾル粒子の気候や健康への影響に大きな影響を及ぼす。
地球系モデルに共通する単純なエアロゾル混合状態仮定は、これらのエアロゾルの影響の予測に誤りをもたらす可能性がある。
エアロゾル混合状態指標のグローバル推定は、最近、教師付き学習モデルによって利用可能になっている。
論文 参考訳(メタデータ) (2020-12-06T20:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。