論文の概要: Visually Evaluating Generative Adversarial Networks Using Itself under Multivariate Time Series
- arxiv url: http://arxiv.org/abs/2208.02649v2
- Date: Sat, 30 Mar 2024 02:49:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 16:23:34.893270
- Title: Visually Evaluating Generative Adversarial Networks Using Itself under Multivariate Time Series
- Title(参考訳): 多変量時系列における自己生成型逆数ネットワークの視覚的評価
- Authors: Qilong Pan,
- Abstract要約: MTS 生成タスク下で GAN を視覚的に評価するための一般フレームワークである Gaussian GAN を提案する。
実験では,UniMiBデータセットを用いて,ガウスGANとチスカウレ視覚化を用いた正規性試験が有効で信頼性が高いことを示す実証的証拠を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visually evaluating the goodness of generated Multivariate Time Series (MTS) are difficult to implement, especially in the case that the generative model is Generative Adversarial Networks (GANs). We present a general framework named Gaussian GANs to visually evaluate GANs using itself under the MTS generation task. Firstly, we attempt to find the transformation function in the multivariate Kolmogorov Smirnov (MKS) test by explicitly reconstructing the architecture of GANs. Secondly, we conduct the normality test of transformed MST where the Gaussian GANs serves as the transformation function in the MKS test. In order to simplify the normality test, an efficient visualization is proposed using the chi square distribution. In the experiment, we use the UniMiB dataset and provide empirical evidence showing that the normality test using Gaussian GANs and chi sqaure visualization is effective and credible.
- Abstract(参考訳): 特に生成モデルがGAN(Generative Adversarial Networks)である場合,生成したマルチ変数時系列(MTS)の良さを視覚的に評価することは困難である。
MTS生成タスクにおいて,GANを視覚的に評価するための一般フレームワークであるGaussian GANを提案する。
まず,多変数コルモゴロフ・スミルノフ(MKS)テストにおいて,GANのアーキテクチャを明示的に再構築することにより変換関数を求める。
第二に、変換 MST の正規性テストを行い、ガウス GAN が MKS テストの変換関数として機能する。
正規性試験を簡略化するために, カイ四角分布を用いた効率的な可視化法を提案する。
実験では,UniMiBデータセットを用いて,ガウスGANとチスカウレ視覚化を用いた正規性試験が有効で信頼性が高いことを示す実証的証拠を提供する。
関連論文リスト
- Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - A Method for Evaluating Deep Generative Models of Images via Assessing
the Reproduction of High-order Spatial Context [9.00018232117916]
GAN(Generative Adversarial Network)は、広く使われているDGMの一種である。
本稿では,2つのGANアーキテクチャによって出力される画像の客観的なテストについて述べる。
我々は、訓練されたGANによって生成した画像の特徴を再現できるいくつかのコンテキストモデル(SCM)を設計した。
論文 参考訳(メタデータ) (2021-11-24T15:58:10Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
本稿では, 地理的に整理された潜伏変数を用いた深部生成モデルを効率的に学習するための新しい手法であるTopographic VAEを紹介する。
このようなモデルでは,MNIST上での桁数クラス,幅,スタイルなどの健全な特徴に応じて,その活性化を組織化することが実際に学べることが示される。
我々は、既存の群同変ニューラルネットワークの能力を拡張して、複素変換に近似した同値性を示す。
論文 参考訳(メタデータ) (2021-09-03T09:25:57Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
機械学習の完全確率的(または生成的)モデルに基づく継続的学習のアプローチを提案する。
生成器と分類器の両方に対してガウス混合モデル(GMM)インスタンスを用いた擬似リハーサル手法を提案する。
我々は,GMRが,クラス増分学習問題に対して,非常に競合的な時間とメモリの複雑さで,最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-04-19T12:26:26Z) - Monte Carlo Simulation of SDEs using GANs [0.0]
GAN が 1 次元幾何学的 Ito 微分方程式 (SDE) の近似にも使用できるかどうかを検討する。
標準GANは分布の過程を近似できるだけであり、SDEに弱い近似をもたらす。
強い近似を可能にする条件付きGANアーキテクチャを提案する。
標準GANおよび監督GANと得られた入力出力マップを比較し、標準GANがパスワイズ近似を提供できない可能性があることを実験的に示した。
論文 参考訳(メタデータ) (2021-04-03T16:06:30Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z) - Gaussianization Flows [113.79542218282282]
そこで本研究では,サンプル生成における効率のよい繰り返しと効率のよい逆変換を両立できる新しい型正規化フローモデルを提案する。
この保証された表現性のため、サンプル生成の効率を損なうことなく、マルチモーダルなターゲット分布をキャプチャできる。
論文 参考訳(メタデータ) (2020-03-04T08:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。