Evaluation of the Bethe logarithm: from atom to chemical reaction
- URL: http://arxiv.org/abs/2208.03033v3
- Date: Sun, 8 Jan 2023 10:19:57 GMT
- Title: Evaluation of the Bethe logarithm: from atom to chemical reaction
- Authors: D\'avid Ferenc and Edit M\'atyus
- Abstract summary: General computational scheme for the (non-relativistic) Bethe logarithm is developed.
Implementation relies on Schwartz' method and minimization of a Hylleraas functional.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A general computational scheme for the (non-relativistic) Bethe logarithm is
developed opening the route to `routine' evaluation of the leading-order
quantum electrodynamics correction (QED) relevant for spectroscopic
applications for small polyatomic and polyelectronic molecular systems. The
implementation relies on Schwartz' method and minimization of a Hylleraas
functional. In relation with electronically excited states, a projection
technique is considered, which ensures positive definiteness of the functional
over the entire parameter (photon momentum) range. Using this implementation,
the Bethe logarithm is converged to a relative precision better than 1:10$^3$
for selected electronic states of the two-electron H$_2$ and H$_3^+$, and the
three-electron He$_2^+$ and H+H$_2$ molecular systems. The present work focuses
at nuclear configurations near the local minimum of the potential energy
surface, but the computations can be repeated also for other structures.
Related papers
- Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - The Weakly Bound States in Gaussian Wells: From the Binding Energy of
Deuteron to the Electronic Structure of Quantum Dots [0.0]
This study focuses on examining the lowest states within Gaussian wells, with particular emphasis on the weakly bound regime.
The analysis delves into the behavior of the exact wave function at both small and large distances, motivating the development of a few-parametric Ansatz.
In concluding our investigation, we evaluate the performance of our Ansatz as an orbital in the exploration of the electronic structure of a two-electron quantum dot.
arXiv Detail & Related papers (2023-11-05T20:48:12Z) - Electronic excitations of the charged nitrogen-vacancy center in diamond
obtained using time-independent variational density functional calculations [0.0]
A direct orbital optimization method is used to perform variational density functional calculations of a prototypical defect in diamond.
Results are remarkably good agreement with high-level, many-body calculations as well as available experimental estimates.
The approach is found to be a promising tool for studying electronic excitations of point defects in solids.
arXiv Detail & Related papers (2023-03-07T12:09:16Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a
Quantum Computer [0.0]
We present an efficient ansatz for the computation of two-electron atoms and molecules within a hybrid quantum-classical algorithm.
The ansatz exploits the fundamental structure of the two-electron system, and treating the nonlocal and local degrees of freedom.
We implement this benchmark with error mitigation on two publicly available quantum computers.
arXiv Detail & Related papers (2020-04-21T23:37:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.