Low-Light Hyperspectral Image Enhancement
- URL: http://arxiv.org/abs/2208.03042v1
- Date: Fri, 5 Aug 2022 08:45:52 GMT
- Title: Low-Light Hyperspectral Image Enhancement
- Authors: Xuelong Li, Guanlin Li, Bin Zhao
- Abstract summary: This work focuses on the low-light HSI enhancement task, which aims to reveal the spatial-spectral information hidden in darkened areas.
Based on Laplacian pyramid decomposition and reconstruction, we developed an end-to-end data-driven low-light HSI enhancement (HSIE) approach.
The effectiveness and efficiency of HSIE both in quantitative assessment measures and visual effects are demonstrated.
- Score: 90.84144276935464
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Due to inadequate energy captured by the hyperspectral camera sensor in poor
illumination conditions, low-light hyperspectral images (HSIs) usually suffer
from low visibility, spectral distortion, and various noises. A range of HSI
restoration methods have been developed, yet their effectiveness in enhancing
low-light HSIs is constrained. This work focuses on the low-light HSI
enhancement task, which aims to reveal the spatial-spectral information hidden
in darkened areas. To facilitate the development of low-light HSI processing,
we collect a low-light HSI (LHSI) dataset of both indoor and outdoor scenes.
Based on Laplacian pyramid decomposition and reconstruction, we developed an
end-to-end data-driven low-light HSI enhancement (HSIE) approach trained on the
LHSI dataset. With the observation that illumination is related to the
low-frequency component of HSI, while textural details are closely correlated
to the high-frequency component, the proposed HSIE is designed to have two
branches. The illumination enhancement branch is adopted to enlighten the
low-frequency component with reduced resolution. The high-frequency refinement
branch is utilized for refining the high-frequency component via a predicted
mask. In addition, to improve information flow and boost performance, we
introduce an effective channel attention block (CAB) with residual dense
connection, which served as the basic block of the illumination enhancement
branch. The effectiveness and efficiency of HSIE both in quantitative
assessment measures and visual effects are demonstrated by experimental results
on the LHSI dataset. According to the classification performance on the remote
sensing Indian Pines dataset, downstream tasks benefit from the enhanced HSI.
Datasets and codes are available:
\href{https://github.com/guanguanboy/HSIE}{https://github.com/guanguanboy/HSIE}.
Related papers
- HSR-KAN: Efficient Hyperspectral Image Super-Resolution via Kolmogorov-Arnold Networks [0.16385815610837165]
We propose an efficient HSI super-resolution (HSI-SR) model to fuse a low-resolution HSI and a high-resolution multispectral image (HR-MSI)
To achieve the effective integration of spatial information from HR-MSI, we design a fusion module based on KANs.
As a channel attention module integrated with KANs, KAN-CAB enables networks to accurately simulate details of spectral sequences and spatial textures.
arXiv Detail & Related papers (2024-08-24T02:51:51Z) - Wave-Mamba: Wavelet State Space Model for Ultra-High-Definition Low-Light Image Enhancement [7.891750065129094]
We propose Wave-Mamba, a novel approach based on two pivotal insights derived from the wavelet domain.
Our method has demonstrated superior performance, significantly outshining current leading techniques.
arXiv Detail & Related papers (2024-08-02T14:01:34Z) - HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved
Diffusion Models [38.74983301496911]
Hyperspectral image (HSI) restoration aims at recovering clean images from degraded observations.
Existing model-based methods have limitations in accurately modeling the complex image characteristics.
This paper proposes an unsupervised HSI restoration framework with pre-trained diffusion model (HIR-Diff)
arXiv Detail & Related papers (2024-02-24T17:15:05Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Seeing Through The Noisy Dark: Toward Real-world Low-Light Image
Enhancement and Denoising [125.56062454927755]
Real-world low-light environment usually suffer from lower visibility and heavier noise, due to insufficient light or hardware limitation.
We propose a novel end-to-end method termed Real-world Low-light Enhancement & Denoising Network (RLED-Net)
arXiv Detail & Related papers (2022-10-02T14:57:23Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
Cycle-Interactive Generative Adversarial Network (CIGAN) is capable of not only better transferring illumination distributions between low/normal-light images but also manipulating detailed signals.
In particular, the proposed low-light guided transformation feed-forwards the features of low-light images from the generator of enhancement GAN into the generator of degradation GAN.
arXiv Detail & Related papers (2022-07-03T06:37:46Z) - Lightness Modulated Deep Inverse Tone Mapping [18.31269649436267]
Single-image HDR reconstruction or inverse tone mapping (iTM) is a challenging task.
We present a deep learning based iTM method that takes advantage of the feature extraction and mapping power of deep convolutional neural networks (CNNs)
We present experimental results to demonstrate the effectiveness of the new technique.
arXiv Detail & Related papers (2021-07-16T13:56:20Z) - SSCAN: A Spatial-spectral Cross Attention Network for Hyperspectral
Image Denoising [12.873607414761093]
We propose a novel HSI denoising network, termed SSCAN, that combines group convolutions and attention modules.
We propose a spectral-spatial attention block (SSAB) to exploit the spatial and spectral information in hyperspectral images in an effective manner.
The experimental results indicate that the proposed SSCAN outperforms several state-of-the-art HSI denoising algorithms.
arXiv Detail & Related papers (2021-05-23T14:36:17Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.