論文の概要: Tools and Methodologies for Verifying Answer Set Programs
- arxiv url: http://arxiv.org/abs/2208.03096v1
- Date: Fri, 5 Aug 2022 10:50:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-08 13:10:22.607473
- Title: Tools and Methodologies for Verifying Answer Set Programs
- Title(参考訳): 回答集合プログラムの検証ツールと方法
- Authors: Zach Hansen (University of Nebraska Omaha)
- Abstract要約: ASP.NETは強力な宣言型プログラミングパラダイムで、検索と最適化の課題を解決するのによく使われます。
知識表現と推論へのアプローチとして、ASPはその単純さ、簡潔さ、厳密に定義されたセマンティクスから恩恵を受ける。
私の研究は、ASPプロガムの検証をサポートする理論とツールの拡張に関するものです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Answer Set Programming (ASP) is a powerful declarative programming paradigm
commonly used for solving challenging search and optimization problems. The
modeling languages of ASP are supported by sophisticated solving algorithms
(solvers) that make the solution search efficient while enabling the programmer
to model the problem at a high level of abstraction. As an approach to
Knowledge Representation and Reasoning, ASP benefits from its simplicity,
conciseness and rigorously defined semantics. These characteristics make ASP a
straightforward way to develop formally verifiable programs. In the context of
artificial intelligence (AI), the clarity of ASP programs lends itself to the
construction of explainable, trustworthy AI. In support of these goals, my
research is concerned with extending the theory and tools supporting the
verification of ASP progams.
- Abstract(参考訳): Answer Set Programming(ASP)は、探索と最適化の難題を解決するために一般的に使用される強力な宣言型プログラミングパラダイムである。
aspのモデリング言語は、高度な解法アルゴリズム(ソルバ)によってサポートされており、プログラマが高レベルの抽象化で問題をモデル化できると同時に、解探索を効率的にする。
知識表現と推論へのアプローチとして、ASPはその単純さ、簡潔さ、厳密に定義されたセマンティクスから恩恵を受ける。
これらの特徴によりASPは、正式に検証可能なプログラムを簡単に開発できる。
人工知能(AI)の文脈では、ASPプログラムの明確さは、説明可能な信頼できるAIの構築に役立っている。
これらの目標をサポートするために、ASPプロガムの検証を支援する理論とツールを拡張することに取り組んでいます。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Explainable Answer-set Programming [0.0]
プロジェクトはこれらのギャップのいくつかを埋めることを目的としており、ASP.NET ASP.NET MVCにおける技術の現状に貢献することを目的としている。
我々は、既存のアプローチの言語サポートを拡張するだけでなく、新しい説明形式を発達させることによって、この問題に対処する。
論文 参考訳(メタデータ) (2023-08-30T09:09:57Z) - Inductive Learning of Declarative Domain-Specific Heuristics for ASP [1.0904219197219578]
本稿では,ドメイン固有性の自動学習に対する新しいアプローチを提案する。
Inductive Logic Programming(ILP)を使用して、小さなが代表的な問題インスタンスの(ほぼ)回答セットから生じる例からドメイン固有性を学ぶ。
実験結果から,同じ問題の大規模で難しいインスタンスを解く際に,学習者が性能とソリューションの品質を向上できることが示唆された。
論文 参考訳(メタデータ) (2023-08-30T08:55:17Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - An Abstract View on Optimizations in Propositional Frameworks [0.6853165736531939]
本稿では,パラダイム間の統語的区別を排除した,いわゆる重みシステムの統一フレームワークを提案する。
このフレームワークは、自動推論と知識表現における最適化とモジュラリティの研究において、大幅な単純化と説明力を持っている。
論文 参考訳(メタデータ) (2022-06-13T19:44:01Z) - Rushing and Strolling among Answer Sets -- Navigation Made Easy [0.0]
本研究では,フェースドブラウジングに類似した回答集合の所望のサブセットに対する対話的ナビゲーションのためのフレームワークを提案する。
提案手法により,あるペースで解のサブスペース内外を意識的にズームアウトすることで,解空間を探索することができる。
論文 参考訳(メタデータ) (2021-12-14T17:50:06Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z) - Conflict-driven Inductive Logic Programming [3.29505746524162]
帰納的論理プログラミング(ILP)の目標は、一連の例を説明するプログラムを学ぶことである。
近年まで、ICPがターゲットとするPrologプログラムの研究がほとんどである。
ILASP システムは代わりに Answer Set Programs (ASP) を学ぶ
論文 参考訳(メタデータ) (2020-12-31T20:24:28Z) - Modelling Multi-Agent Epistemic Planning in ASP [66.76082318001976]
本稿では,マルチショット・アンサー・セット・プログラミング・ベース・プランナの実装について述べる。
本稿は, アドホックなエピステミック状態表現とASPソルバの効率を生かしたプランナーが, 文献から収集したベンチマークに対して, 競合的な性能を示すことを示す。
論文 参考訳(メタデータ) (2020-08-07T06:35:56Z) - The ILASP system for Inductive Learning of Answer Set Programs [79.41112438865386]
我々のシステムは、通常の規則、選択規則、厳しい制約を含むアンサーセットプログラムを学習する。
まず、ILASPの学習フレームワークとその機能の概要を説明します。
続いて、ILASPシステムの進化を概観する。
論文 参考訳(メタデータ) (2020-05-02T19:04:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。