Multi-fidelity surrogate modeling using long short-term memory networks
- URL: http://arxiv.org/abs/2208.03115v1
- Date: Fri, 5 Aug 2022 12:05:02 GMT
- Title: Multi-fidelity surrogate modeling using long short-term memory networks
- Authors: Paolo Conti, Mengwu Guo, Andrea Manzoni, Jan S. Hesthaven
- Abstract summary: We introduce a novel data-driven framework of multi-fidelity surrogate modeling for parametrized, time-dependent problems.
We show that the proposed multi-fidelity LSTM networks not only improve single-fidelity regression significantly, but also outperform the multi-fidelity models based on feed-forward neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When evaluating quantities of interest that depend on the solutions to
differential equations, we inevitably face the trade-off between accuracy and
efficiency. Especially for parametrized, time dependent problems in engineering
computations, it is often the case that acceptable computational budgets limit
the availability of high-fidelity, accurate simulation data. Multi-fidelity
surrogate modeling has emerged as an effective strategy to overcome this
difficulty. Its key idea is to leverage many low-fidelity simulation data, less
accurate but much faster to compute, to improve the approximations with limited
high-fidelity data. In this work, we introduce a novel data-driven framework of
multi-fidelity surrogate modeling for parametrized, time-dependent problems
using long short-term memory (LSTM) networks, to enhance output predictions
both for unseen parameter values and forward in time simultaneously - a task
known to be particularly challenging for data-driven models. We demonstrate the
wide applicability of the proposed approaches in a variety of engineering
problems with high- and low-fidelity data generated through fine versus coarse
meshes, small versus large time steps, or finite element full-order versus deep
learning reduced-order models. Numerical results show that the proposed
multi-fidelity LSTM networks not only improve single-fidelity regression
significantly, but also outperform the multi-fidelity models based on
feed-forward neural networks.
Related papers
- TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [31.10683149519954]
We propose an innovative time series forecasting model TimeSieve.
Our approach employs wavelet transforms to preprocess time series data, effectively capturing multi-scale features.
Our results validate the effectiveness of our approach in addressing the key challenges in time series forecasting.
arXiv Detail & Related papers (2024-06-07T15:58:12Z) - Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling [19.60087366873302]
Multi-fidelity surrogate modeling aims to learn an accurate surrogate at the highest fidelity level.
Deep learning approaches utilize neural network based encoders and decoders to improve scalability.
We propose Multi-fidelity Residual Neural Processes (MFRNP), a novel multi-fidelity surrogate modeling framework.
arXiv Detail & Related papers (2024-02-29T04:40:25Z) - Multi-fidelity reduced-order surrogate modeling [5.346062841242067]
We present a new data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates.
We show that the onset of instabilities and transients are well captured by this surrogate technique.
arXiv Detail & Related papers (2023-09-01T08:16:53Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Multi-fidelity regression using artificial neural networks: efficient
approximation of parameter-dependent output quantities [0.17499351967216337]
We present the use of artificial neural networks applied to multi-fidelity regression problems.
The introduced models are compared against a traditional multi-fidelity scheme, co-kriging.
We also show an application of multi-fidelity regression to an engineering problem.
arXiv Detail & Related papers (2021-02-26T11:29:00Z) - Neural Closure Models for Dynamical Systems [35.000303827255024]
We develop a novel methodology to learn non-Markovian closure parameterizations for low-fidelity models.
New "neural closure models" augment low-fidelity models with neural delay differential equations (nDDEs)
We show that using non-Markovian over Markovian closures improves long-term accuracy and requires smaller networks.
arXiv Detail & Related papers (2020-12-27T05:55:33Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.