Active Learning for Non-Parametric Choice Models
- URL: http://arxiv.org/abs/2208.03346v2
- Date: Thu, 25 Apr 2024 13:16:22 GMT
- Title: Active Learning for Non-Parametric Choice Models
- Authors: Fransisca Susan, Negin Golrezaei, Ehsan Emamjomeh-Zadeh, David Kempe,
- Abstract summary: We study the problem of actively learning a non-parametric choice model based on consumers' decisions.
We present a negative result showing that such choice models may not be identifiable.
- Score: 9.737139416043949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of actively learning a non-parametric choice model based on consumers' decisions. We present a negative result showing that such choice models may not be identifiable. To overcome the identifiability problem, we introduce a directed acyclic graph (DAG) representation of the choice model. This representation provably encodes all the information about the choice model which can be inferred from the available data, in the sense that it permits computing all choice probabilities. We establish that given exact choice probabilities for a collection of item sets, one can reconstruct the DAG. However, attempting to extend this methodology to estimate the DAG from noisy choice frequency data obtained during an active learning process leads to inaccuracies. To address this challenge, we present an inclusion-exclusion approach that effectively manages error propagation across DAG levels, leading to a more accurate estimate of the DAG. Utilizing this technique, our algorithm estimates the DAG representation of an underlying non-parametric choice model. The algorithm operates efficiently (in polynomial time) when the set of frequent rankings is drawn uniformly at random. It learns the distribution over the most popular items among frequent preference types by actively and repeatedly offering assortments of items and observing the chosen item. We demonstrate that our algorithm more effectively recovers a set of frequent preferences on both synthetic and publicly available datasets on consumers' preferences, compared to corresponding non-active learning estimation algorithms. These findings underscore the value of our algorithm and the broader applicability of active-learning approaches in modeling consumer behavior.
Related papers
- Towards Free Data Selection with General-Purpose Models [71.92151210413374]
A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets.
Current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly.
FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods.
arXiv Detail & Related papers (2023-09-29T15:50:14Z) - Active Learning for Regression with Aggregated Outputs [28.40183946090337]
We propose an active learning method that sequentially selects sets to be labeled to improve the predictive performance with fewer labeled sets.
With the experiments using various datasets, we demonstrate that the proposed method achieves better predictive performance with fewer labeled sets than existing methods.
arXiv Detail & Related papers (2022-10-04T02:45:14Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Time Series Anomaly Detection with label-free Model Selection [0.6303112417588329]
We propose LaF-AD, a novel anomaly detection algorithm with label-free model selection for unlabeled times-series data.
Our algorithm is easily parallelizable, more robust for ill-conditioned and seasonal data, and highly scalable for a large number of anomaly models.
arXiv Detail & Related papers (2021-06-11T00:21:06Z) - Towards Deterministic Diverse Subset Sampling [14.236193187116049]
In this paper, we discuss a greedy deterministic adaptation of k-DPP.
We demonstrate the usefulness of the model on an image search task.
arXiv Detail & Related papers (2021-05-28T16:05:58Z) - Feature Selection Using Reinforcement Learning [0.0]
The space of variables or features that can be used to characterize a particular predictor of interest continues to grow exponentially.
Identifying the most characterizing features that minimizes the variance without jeopardizing the bias of our models is critical to successfully training a machine learning model.
arXiv Detail & Related papers (2021-01-23T09:24:37Z) - Finding the Homology of Decision Boundaries with Active Learning [26.31885403636642]
We propose an active learning algorithm to recover the homology of decision boundaries.
Our algorithm sequentially and adaptively selects which samples it requires the labels of.
Experiments on several datasets show the sample complexity improvement in recovering the homology.
arXiv Detail & Related papers (2020-11-19T04:22:06Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
We design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round.
Our algorithm can be used for online prediction tasks for both adversarial and streams.
arXiv Detail & Related papers (2020-10-19T19:53:15Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Decorrelated Clustering with Data Selection Bias [55.91842043124102]
We propose a novel Decorrelation regularized K-Means algorithm (DCKM) for clustering with data selection bias.
Our DCKM algorithm achieves significant performance gains, indicating the necessity of removing unexpected feature correlations induced by selection bias.
arXiv Detail & Related papers (2020-06-29T08:55:50Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.