Self-Supervised Coordinate Projection Network for Sparse-View Computed
Tomography
- URL: http://arxiv.org/abs/2209.05483v2
- Date: Fri, 11 Aug 2023 04:28:51 GMT
- Title: Self-Supervised Coordinate Projection Network for Sparse-View Computed
Tomography
- Authors: Qing Wu, Ruimin Feng, Hongjiang Wei, Jingyi Yu, and Yuyao Zhang
- Abstract summary: We propose a Self-supervised COordinate Projection nEtwork (SCOPE) to reconstruct the artifacts-free CT image from a single SV sinogram.
Compared with recent related works that solve similar problems using implicit neural representation network (INR), our essential contribution is an effective and simple re-projection strategy.
- Score: 31.774432128324385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the present work, we propose a Self-supervised COordinate Projection
nEtwork (SCOPE) to reconstruct the artifacts-free CT image from a single SV
sinogram by solving the inverse tomography imaging problem. Compared with
recent related works that solve similar problems using implicit neural
representation network (INR), our essential contribution is an effective and
simple re-projection strategy that pushes the tomography image reconstruction
quality over supervised deep learning CT reconstruction works. The proposed
strategy is inspired by the simple relationship between linear algebra and
inverse problems. To solve the under-determined linear equation system, we
first introduce INR to constrain the solution space via image continuity prior
and achieve a rough solution. And secondly, we propose to generate a dense view
sinogram that improves the rank of the linear equation system and produces a
more stable CT image solution space. Our experiment results demonstrate that
the re-projection strategy significantly improves the image reconstruction
quality (+3 dB for PSNR at least). Besides, we integrate the recent hash
encoding into our SCOPE model, which greatly accelerates the model training.
Finally, we evaluate SCOPE in parallel and fan X-ray beam SVCT reconstruction
tasks. Experimental results indicate that the proposed SCOPE model outperforms
two latest INR-based methods and two well-popular supervised DL methods
quantitatively and qualitatively.
Related papers
- Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) is an unsupervised framework designed to address the exceptionally ill-posed CT reconstruction inverse problems.
DPER adopts the Half Quadratic Splitting (HQS) algorithm to decompose the inverse problem into data fidelity and distribution prior sub-problems.
We conduct comprehensive experiments to evaluate the performance of DPER on LACT and ultra-SVCT reconstruction with two public datasets.
arXiv Detail & Related papers (2024-04-27T12:55:13Z) - Low-resolution Prior Equilibrium Network for CT Reconstruction [3.5639148953570836]
We present a novel deep learning-based CT reconstruction model, where the low-resolution image is introduced to obtain an effective regularization term for improving the networks robustness.
Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end low-resolution prior equilibrium model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
arXiv Detail & Related papers (2024-01-28T13:59:58Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
We propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction.
Each proposed trained block consists of a deterministic MBIR solver and a neural network.
We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data.
arXiv Detail & Related papers (2023-11-19T20:23:59Z) - Deep Learning for Material Decomposition in Photon-Counting CT [0.5801044612920815]
We present a novel deep-learning solution for material decomposition in PCCT, based on an unrolled/unfolded iterative network.
Our approach outperforms a maximum likelihood estimation, a variational method, as well as a fully-learned network.
arXiv Detail & Related papers (2022-08-05T19:05:16Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - DeepRLS: A Recurrent Network Architecture with Least Squares Implicit
Layers for Non-blind Image Deconvolution [15.986942312624]
We study the problem of non-blind image deconvolution.
We propose a novel recurrent network architecture that leads to very competitive restoration results of high image quality.
arXiv Detail & Related papers (2021-12-10T13:16:51Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.