論文の概要: Federated Learning for Medical Applications: A Taxonomy, Current Trends,
Challenges, and Future Research Directions
- arxiv url: http://arxiv.org/abs/2208.03392v5
- Date: Sun, 29 Oct 2023 19:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 01:26:40.371176
- Title: Federated Learning for Medical Applications: A Taxonomy, Current Trends,
Challenges, and Future Research Directions
- Title(参考訳): 医学分野におけるフェデレートラーニング : 分類学, 現状, 課題, 今後の研究方向性
- Authors: Ashish Rauniyar, Desta Haileselassie Hagos, Debesh Jha, Jan Erik
H{\aa}keg{\aa}rd, Ulas Bagci, Danda B. Rawat, and Vladimir Vlassov
- Abstract要約: 我々は, acFLの医学的応用, 特にグローバル癌診断の文脈に焦点をあてる。
acFLの最近の発展により、複雑な機械学習モデルを分散的に訓練することが可能になった。
- 参考スコア(独自算出の注目度): 9.662980267339375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of the IoT, AI, ML, and DL algorithms, the landscape of
data-driven medical applications has emerged as a promising avenue for
designing robust and scalable diagnostic and prognostic models from medical
data. This has gained a lot of attention from both academia and industry,
leading to significant improvements in healthcare quality. However, the
adoption of AI-driven medical applications still faces tough challenges,
including meeting security, privacy, and quality of service (QoS) standards.
Recent developments in \ac{FL} have made it possible to train complex
machine-learned models in a distributed manner and have become an active
research domain, particularly processing the medical data at the edge of the
network in a decentralized way to preserve privacy and address security
concerns. To this end, in this paper, we explore the present and future of FL
technology in medical applications where data sharing is a significant
challenge. We delve into the current research trends and their outcomes,
unravelling the complexities of designing reliable and scalable \ac{FL} models.
Our paper outlines the fundamental statistical issues in FL, tackles
device-related problems, addresses security challenges, and navigates the
complexity of privacy concerns, all while highlighting its transformative
potential in the medical field. Our study primarily focuses on medical
applications of \ac{FL}, particularly in the context of global cancer
diagnosis. We highlight the potential of FL to enable computer-aided diagnosis
tools that address this challenge with greater effectiveness than traditional
data-driven methods. We hope that this comprehensive review will serve as a
checkpoint for the field, summarizing the current state-of-the-art and
identifying open problems and future research directions.
- Abstract(参考訳): iot、ai、ml、dlアルゴリズムの出現により、データ駆動医療アプリケーションの展望は、医療データから堅牢でスケーラブルな診断および予測モデルを設計するための有望な道として現れてきた。
これは学術と産業の両方から多くの注目を集め、医療の質が大幅に向上した。
しかし、AI駆動の医療アプリケーションの採用は、セキュリティ、プライバシ、QoS(Quality of Service)標準を満たすなど、依然として困難な課題に直面している。
近年の \ac{fl} の開発により、複雑な機械学習モデルの分散トレーニングが可能となり、特にネットワークの端にある医療データを、プライバシの保護とセキュリティ上の懸念に対処する分散型の方法で処理する、活発な研究領域となっている。
そこで本論文では,データ共有が重要な課題である医療アプリケーションにおけるFL技術の現状と将来について検討する。
信頼性が高くスケーラブルな \ac{FL} モデルの設計の複雑さを誇示し、現在の研究動向とその成果を掘り下げる。
本稿では,FLの基本的な統計問題を概説し,デバイス関連問題に取り組み,セキュリティ問題に対処し,プライバシー上の懸念の複雑さを回避しつつ,医療分野におけるその変革の可能性を強調した。
本研究は,特にグローバルながん診断の文脈における<ac{FL}の医学的応用に焦点を当てた。
我々はこの課題に対処するコンピュータ支援診断ツールを従来のデータ駆動手法よりも有効に活用する可能性を強調した。
この総合的なレビューがこの分野のチェックポイントとして機能し、現状を要約し、オープンな問題と今後の研究方向性を特定することを願っている。
関連論文リスト
- Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review [14.88874727211064]
AIはすぐに、病気の診断、予後、治療計画、治療後の監視のための臨床実践のルーチンになるかもしれない。
患者のデータを取り巻くプライバシー上の懸念は、医療画像にAIが広く採用される上で大きな障壁となる。
Federated Learning(FL)は、機密データを共有することなく、AIモデルを協調的にトレーニングするためのソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-24T16:55:32Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKIはデータのプライバシーを守るだけでなく、医療基盤モデルの能力を高める。
FEDMEKIは、医療ファンデーションモデルに対して、直接データを公開することなく、幅広い医療知識から学ぶことを可能にする。
論文 参考訳(メタデータ) (2024-08-17T15:18:56Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Federated Learning in Healthcare: Model Misconducts, Security, Challenges, Applications, and Future Research Directions -- A Systematic Review [2.710010611878837]
フェデレートラーニング(FL)は、複数の医療機関が共有することなく、分散データから共同で学ぶことを可能にする。
FLの医療分野は、疾患予測、治療のカスタマイズ、臨床試験研究などの分野をカバーしている。
FLの実装は、非IIDデータ環境におけるモデル収束、通信オーバーヘッド、複数機関の協調管理など、課題を提起する。
論文 参考訳(メタデータ) (2024-05-22T16:59:50Z) - Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare [14.399086205317358]
ファンデーションモデル(FM)は、教師なし事前訓練、自己教師付き学習、微調整の指導、人間のフィードバックからの強化学習など、膨大なデータセットで訓練される。
これらのモデルは、臨床報告、診断画像、マルチモーダル患者間相互作用などの多様なデータフォームの処理を必要とする生体医学的応用に不可欠である。
FLをこれらの洗練されたモデルに組み込むことは、機密性の高い医療データのプライバシーを守りながら、分析能力を活用するという有望な戦略を示す。
論文 参考訳(メタデータ) (2024-05-10T19:22:24Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - Towards Smart Healthcare: Challenges and Opportunities in IoT and ML [0.0]
新型コロナウイルス(COVID-19)のパンデミックや他の健康危機は、世界中の医療サービスを促進する必要性を浮き彫りにした。
この章は、IoTヘルスケアセクターに機械学習メソッドを統合する際に直面するハードルを探求することに焦点を当てている。
現在の研究課題と潜在的な機会を包括的にまとめ、三つのシナリオに分類する。
論文 参考訳(メタデータ) (2023-12-09T10:45:44Z) - Multimodal Federated Learning in Healthcare: a Review [5.983768682145731]
フェデレートラーニング(FL)は、データを統合する必要のない分散メカニズムを提供する。
本稿では,医療分野におけるマルチモーダル・フェデレート・ラーニング(MMFL)の現状について概説する。
最先端のAI技術と、医療アプリケーションにおける患者のデータプライバシの必要性のギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2023-10-14T19:43:06Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。