論文の概要: Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare
- arxiv url: http://arxiv.org/abs/2405.06784v1
- Date: Fri, 10 May 2024 19:22:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:05:32.592051
- Title: Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare
- Title(参考訳): バイオメディカルヘルスケアに向けたフェデレーションモデルにおけるオープンチャレンジと機会
- Authors: Xingyu Li, Lu Peng, Yuping Wang, Weihua Zhang,
- Abstract要約: ファンデーションモデル(FM)は、教師なし事前訓練、自己教師付き学習、微調整の指導、人間のフィードバックからの強化学習など、膨大なデータセットで訓練される。
これらのモデルは、臨床報告、診断画像、マルチモーダル患者間相互作用などの多様なデータフォームの処理を必要とする生体医学的応用に不可欠である。
FLをこれらの洗練されたモデルに組み込むことは、機密性の高い医療データのプライバシーを守りながら、分析能力を活用するという有望な戦略を示す。
- 参考スコア(独自算出の注目度): 14.399086205317358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) for advancing biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions. The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data. This approach not only enhances the capabilities of FMs in medical diagnostics and personalized treatment but also addresses critical concerns about data privacy and security in healthcare. This survey reviews the current applications of FMs in federated settings, underscores the challenges, and identifies future research directions including scaling FMs, managing data diversity, and enhancing communication efficiency within FL frameworks. The objective is to encourage further research into the combined potential of FMs and FL, laying the groundwork for groundbreaking healthcare innovations.
- Abstract(参考訳): 本研究は, 人工知能における基礎モデル(FM)の変容的影響を考察し, 生物医学研究の進展に向け, 連邦学習(FL)と統合することに焦点を当てた。
ChatGPT、LLaMa、CLIPなどの基盤モデルは、教師なし事前トレーニング、自己教師付き学習、指示された微調整、人間からのフィードバックからの強化学習など、膨大なデータセットでトレーニングされている。
これらのモデルは、コヒーレントテキストや現実的な画像を生成する能力を持ち、臨床報告、診断画像、マルチモーダル患者相互作用などの多様なデータフォームの処理を必要とする生体医学的応用に不可欠である。
FLをこれらの洗練されたモデルに組み込むことは、機密性の高い医療データのプライバシーを守りながら、分析能力を活用するという有望な戦略を示す。
このアプローチは、医療診断やパーソナライズされた治療におけるFMの能力を向上するだけでなく、医療におけるデータのプライバシとセキュリティに関する重要な懸念にも対処する。
本調査では,FMのフェデレーション・セッティングにおける現在の応用を概観し,課題を明らかにし,FMのスケーリング,データの多様性管理,FLフレームワーク内の通信効率の向上など,今後の研究方向性を明らかにする。
目的は、FMとFLの融合の可能性についてさらなる研究を奨励することであり、医療革新の基盤となる。
関連論文リスト
- Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review [14.88874727211064]
AIはすぐに、病気の診断、予後、治療計画、治療後の監視のための臨床実践のルーチンになるかもしれない。
患者のデータを取り巻くプライバシー上の懸念は、医療画像にAIが広く採用される上で大きな障壁となる。
Federated Learning(FL)は、機密データを共有することなく、AIモデルを協調的にトレーニングするためのソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-24T16:55:32Z) - FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models [54.09244105445476]
本研究は,フェデレート・ラーニング・フレームワーク内で医療基盤モデルを拡張するための新しい知識注入手法であるFedKIMを紹介する。
FedKIMは軽量なローカルモデルを活用して、プライベートデータから医療知識を抽出し、この知識を集中基盤モデルに統合する。
7つのモードで12タスクを対象に実験を行い,FedKIMの有効性について検討した。
論文 参考訳(メタデータ) (2024-08-17T15:42:29Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKIはデータのプライバシーを守るだけでなく、医療基盤モデルの能力を高める。
FEDMEKIは、医療ファンデーションモデルに対して、直接データを公開することなく、幅広い医療知識から学ぶことを可能にする。
論文 参考訳(メタデータ) (2024-08-17T15:18:56Z) - Privacy Preserving Federated Learning in Medical Imaging with Uncertainty Estimation [15.63535423357971]
機械学習(ML)と人工知能(AI)は、特に医療において顕著な進歩を加速している。医療画像では、MLモデルは、疾患の診断、治療計画、治療後のモニタリングを改善するという約束を持っている。
患者のデータを取り巻くプライバシーに関する懸念は、正確で堅牢で一般化可能なモデルの開発とトレーニングに必要な大規模なトレーニングデータセットの組み立てを妨げる。
フェデレートラーニング(FL)は魅力的なソリューションとして登場し、データ(医療画像など)ではなくモデルトレーニング情報(段階的)を共有することで、組織がMLモデルのトレーニングに協力できるようにする。
論文 参考訳(メタデータ) (2024-06-18T17:35:52Z) - Federated Learning in Healthcare: Model Misconducts, Security, Challenges, Applications, and Future Research Directions -- A Systematic Review [2.710010611878837]
フェデレートラーニング(FL)は、複数の医療機関が共有することなく、分散データから共同で学ぶことを可能にする。
FLの医療分野は、疾患予測、治療のカスタマイズ、臨床試験研究などの分野をカバーしている。
FLの実装は、非IIDデータ環境におけるモデル収束、通信オーバーヘッド、複数機関の協調管理など、課題を提起する。
論文 参考訳(メタデータ) (2024-05-22T16:59:50Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
基礎モデル(FM)は、特に深層学習の領域において、計算生物学の新しい時代に定着した。
我々の焦点は、特定の生物学的問題にFMを応用することであり、研究ニーズに適切なFMを選択するために研究コミュニティを指導することを目的としています。
データノイズ、モデル説明可能性、潜在的なバイアスなど、生物学においてFMが直面する課題と限界を分析します。
論文 参考訳(メタデータ) (2024-02-06T02:29:17Z) - Multi-Site Clinical Federated Learning using Recursive and Attentive
Models and NVFlare [13.176351544342735]
本稿では、データプライバシと規制コンプライアンスの課題に対処する統合フレームワークを開発する。
これには、データのプライバシと規制コンプライアンスの課題に対処し、高い精度を維持し、提案されたアプローチの有効性を実証する統合フレームワークの開発が含まれている。
論文 参考訳(メタデータ) (2023-06-28T17:00:32Z) - Federated Learning for Medical Applications: A Taxonomy, Current Trends,
Challenges, and Future Research Directions [9.662980267339375]
我々は, acFLの医学的応用, 特にグローバル癌診断の文脈に焦点をあてる。
acFLの最近の発展により、複雑な機械学習モデルを分散的に訓練することが可能になった。
論文 参考訳(メタデータ) (2022-08-05T21:41:15Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。