論文の概要: Bayesian predictive modeling of multi-source multi-way data
- arxiv url: http://arxiv.org/abs/2208.03396v1
- Date: Fri, 5 Aug 2022 21:58:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-09 14:05:59.698940
- Title: Bayesian predictive modeling of multi-source multi-way data
- Title(参考訳): 多元多方向データのベイズ予測モデル
- Authors: Jonathan Kim, Brian J. Sandri, Raghavendra B. Rao, Eric F. Lock
- Abstract要約: 初期鉄欠乏症 (ID) の予測因子として, 複数のオミクス源から得られた分子データについて検討した。
係数に低ランク構造を持つ線形モデルを用いて多方向依存を捕捉する。
本モデルでは, 誤分類率と推定係数と真の係数との相関から, 期待通りの性能を示すことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a Bayesian approach to predict a continuous or binary outcome from
data that are collected from multiple sources with a multi-way (i.e..
multidimensional tensor) structure. As a motivating example we consider
molecular data from multiple 'omics sources, each measured over multiple
developmental time points, as predictors of early-life iron deficiency (ID) in
a rhesus monkey model. We use a linear model with a low-rank structure on the
coefficients to capture multi-way dependence and model the variance of the
coefficients separately across each source to infer their relative
contributions. Conjugate priors facilitate an efficient Gibbs sampling
algorithm for posterior inference, assuming a continuous outcome with normal
errors or a binary outcome with a probit link. Simulations demonstrate that our
model performs as expected in terms of misclassification rates and correlation
of estimated coefficients with true coefficients, with large gains in
performance by incorporating multi-way structure and modest gains when
accounting for differing signal sizes across the different sources. Moreover,
it provides robust classification of ID monkeys for our motivating application.
Software in the form of R code is available at
https://github.com/BiostatsKim/BayesMSMW .
- Abstract(参考訳): マルチウェイ(多次元テンソル)構造を持つ複数のソースから収集されたデータから連続的あるいは二値的な結果を予測するベイズ的手法を開発する。
本研究の動機となる例として, 初期鉄欠乏症(ID)の予測因子として, 複数の発生時間点から測定された複数のオミクス源の分子データを考える。
係数に低ランク構造を持つ線形モデルを用いて,多方向依存を捉え,それらの相対的寄与を推定するために係数の分散を個別にモデル化する。
共役優先法は、正規誤差による連続結果やプロビットリンクによる二進結果と仮定して、後続推論のための効率的なgibbsサンプリングアルゴリズムを促進する。
シミュレーションにより, 推定係数の誤分類率と真の係数との相関から, 異なる音源の異なる信号サイズを考慮した場合, マルチウェイ構造とモデストゲインを組み込むことにより, 性能が大きく向上したことを示す。
さらに、私たちのモチベーション応用のために、IDサルの堅牢な分類を提供する。
Rコード形式のソフトウェアはhttps://github.com/BiostatsKim/BayesMSMWで入手できる。
関連論文リスト
- Bayesian Joint Additive Factor Models for Multiview Learning [7.254731344123118]
マルチオミクスデータが収集され、臨床結果と相関する精度医学の文脈でモチベーション応用が生じる。
本稿では,共有およびビュー固有のコンポーネントを考慮に入れた,構造化された付加的設計を伴うJAFAR(Joint Additive Factor regression model)を提案する。
免疫,メタボローム,プロテオームデータから得られた時間とラベルの発症の予測は,最先端の競合相手に対するパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-06-02T15:35:45Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
ディープニューラルネットワークは、独立かつ同一に分散されたデータ(すなわち、d)から学習する上で、優れたパフォーマンスを達成する。
しかし、アウト・オブ・ディストリビューション(OoD)データを扱う場合、その性能は著しく低下する。
多様なOoDサンプルを合成するために,複数のドメインから学習した生成モデルを融合するための生成補間法(Generative Interpolation)を開発した。
論文 参考訳(メタデータ) (2023-07-23T03:53:53Z) - Bayesian Additive Main Effects and Multiplicative Interaction Models
using Tensor Regression for Multi-environmental Trials [0.0]
本稿では,複数の因子が表現型予測に与える影響を考慮したベイズテンソル回帰モデルを提案する。
我々は、モデルのパラメータ間で生じる可能性のある識別可能性の問題を解決するための、事前分布のセットを採用する。
我々は2010年から2019年までのアイルランドにおける小麦生産に関する実世界のデータを分析して、我々のモデルの適用性を探る。
論文 参考訳(メタデータ) (2023-01-09T19:54:50Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
データの多変量分布を学習することは、統計学と機械学習における中核的な課題である。
本研究では,多変量累積分布関数(CDF)を学習し,混合確率変数を扱えるようにすることを目的とする。
混合確率変数の合同CDFの任意のグリッドサンプリング版は、単純ベイズモデルとして普遍表現を許容することを示す。
提案モデルの性能を,回帰,サンプリング,データ計算を含むいくつかの合成および実データおよびアプリケーションで実証する。
論文 参考訳(メタデータ) (2022-10-13T16:18:46Z) - A Graphical Model for Fusing Diverse Microbiome Data [2.385985842958366]
本稿では,このような数値データを共同でモデル化するフレキシブルな多項ガウス生成モデルを提案する。
本稿では、潜在変数とモデルのパラメータを推定するための、計算にスケーラブルな変動予測-最大化(EM)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-21T17:54:39Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
量子回帰は、予測の不確実性を定量化する必要性によって動機付けられた統計学習の基本的な問題である。
条件付き量子モデルの任意の数を集約する手法について検討する。
この論文で検討するモデルはすべて、現代のディープラーニングツールキットに適合します。
論文 参考訳(メタデータ) (2021-02-26T23:21:16Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
我々は,各層で変数選択を行うマルチオミックロジスティック回帰に対する2段階のアプローチを実装した。
私たちのアプローチは、可能な限り多くの関連する予測子を選択することを目標とすべきです。
提案手法により,分子レベルでの心筋メタボリックシンドロームの特徴を同定することができる。
論文 参考訳(メタデータ) (2020-08-01T10:36:27Z) - On the Discrepancy between Density Estimation and Sequence Generation [92.70116082182076]
log-likelihoodは、同じファミリー内のモデルを考えるとき、BLEUと非常に相関している。
異なる家族間でのモデルランキングの相関はみられない。
論文 参考訳(メタデータ) (2020-02-17T20:13:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。