論文の概要: Image Quality Assessment with Gradient Siamese Network
- arxiv url: http://arxiv.org/abs/2208.04081v1
- Date: Mon, 8 Aug 2022 12:10:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-09 14:08:38.707987
- Title: Image Quality Assessment with Gradient Siamese Network
- Title(参考訳): グラデーション・シャムゼネットワークを用いた画質評価
- Authors: Heng Cong, Lingzhi Fu, Rongyu Zhang, Yusheng Zhang, Hao Wang, Jiarong
He, Jin Gao
- Abstract要約: 画像品質評価のためのグラディエント・シームズ・ネットワーク(GSN)を提案する。
画像ペアに隠された意味的特徴と細部の違いの両方を得るために、中央微分畳み込みを利用する。
ネットワークが抽出した低レベル,中レベル,高レベルの特徴に対して,多レベル融合法を革新的に設計する。
- 参考スコア(独自算出の注目度): 8.958447396656581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce Gradient Siamese Network (GSN) for image quality
assessment. The proposed method is skilled in capturing the gradient features
between distorted images and reference images in full-reference image quality
assessment(IQA) task. We utilize Central Differential Convolution to obtain
both semantic features and detail difference hidden in image pair. Furthermore,
spatial attention guides the network to concentrate on regions related to image
detail. For the low-level, mid-level and high-level features extracted by the
network, we innovatively design a multi-level fusion method to improve the
efficiency of feature utilization. In addition to the common mean square error
supervision, we further consider the relative distance among batch samples and
successfully apply KL divergence loss to the image quality assessment task. We
experimented the proposed algorithm GSN on several publicly available datasets
and proved its superior performance. Our network won the second place in NTIRE
2022 Perceptual Image Quality Assessment Challenge track 1 Full-Reference.
- Abstract(参考訳): 本研究では,画像品質評価のためのGSN(Gradient Siamese Network)を提案する。
提案手法は,全参照画像品質評価(IQA)タスクにおいて,歪み画像と参照画像との間の勾配特性の把握に長けている。
画像対に隠された意味的特徴と細部の違いの両方を得るために中央微分畳み込みを利用する。
さらに、空間的注意は、ネットワークが画像詳細に関連する領域に集中するように誘導する。
ネットワークによって抽出される低レベル,中レベル,高レベルの特徴に対して,特徴利用効率を向上させるため,多レベル融合法を革新的に設計する。
一般的な平均二乗誤差監視に加えて、バッチサンプル間の相対距離についても検討し、画像品質評価タスクにKL分散損失をうまく適用する。
提案アルゴリズムをいくつかの公開データセット上で実験し,その性能を実証した。
NTIRE 2022 Perceptual Image Quality Assessment Challenge 1 Full-Referenceで2位を獲得しました。
関連論文リスト
- DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
拡散先行型IQA(DP-IQA)と呼ばれる新しいIQA法を提案する。
トレーニング済みの安定拡散をバックボーンとして使用し、復調するU-Netから多レベル特徴を抽出し、それらをデコードして画質スコアを推定する。
上記のモデルの知識をCNNベースの学生モデルに抽出し、適用性を高めるためにパラメータを大幅に削減する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Progressive Feature Fusion Network for Enhancing Image Quality
Assessment [8.06731856250435]
画像群において、どの画像が良いかを決定するための画像品質評価フレームワークを提案する。
微妙な違いを捉えるため、マルチスケールな特徴を得るためにきめ細かなネットワークが採用されている。
実験の結果,現在の主流画像品質評価手法と比較して,提案手法はより正確な画像品質評価を実現することができることがわかった。
論文 参考訳(メタデータ) (2024-01-13T06:34:32Z) - Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild [38.197794061203055]
教師なし環境で高レベルのコンテンツと低レベルの画像品質特徴を学習するために、2つの異なるエンコーダを訓練するためのMixture of Expertsアプローチを提案する。
本稿では,Re-IQAフレームワークから得られた高次・低次画像表現を,線形回帰モデルをトレーニングするために展開する。
本手法は,大規模画像品質評価データベース上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-04-02T05:06:51Z) - MANIQA: Multi-dimension Attention Network for No-Reference Image Quality
Assessment [18.637040004248796]
No-Reference Image Quality Assessment (NR-IQA) は、人間の主観的知覚に応じて画像の知覚品質を評価することを目的としている。
既存のNR-IQA法は、GANに基づく歪み画像の正確な品質スコアを予測する必要性を満たすには程遠い。
本稿では,非参照画像品質評価(MANIQA)のための多次元注意ネットワークを提案する。
論文 参考訳(メタデータ) (2022-04-19T15:56:43Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - (ASNA) An Attention-based Siamese-Difference Neural Network with
Surrogate Ranking Loss function for Perceptual Image Quality Assessment [0.0]
画像復元と拡張のための逆訓練フレームワークを利用する深層畳み込みニューラルネットワーク(dcnn)は、処理された画像のシャープさを大幅に改善した。
イメージの知覚品質とよく一致したパフォーマンスを反映した定量的指標を開発する必要がある。
本稿では,従来のSiameseネットワークの拡張アーキテクチャを用いた畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-05-06T09:04:21Z) - Unpaired Image Enhancement with Quality-Attention Generative Adversarial
Network [92.01145655155374]
品質の注意を払わないデータに基づいて訓練された生成敵対ネットワーク(QAGAN)を提案する。
提案されたQAGANの重要な新規性は、ジェネレータの注入されたQAMにある。
提案手法は客観的評価と主観評価の両方において良好な性能を実現する。
論文 参考訳(メタデータ) (2020-12-30T05:57:20Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z) - Deep Multi-Scale Features Learning for Distorted Image Quality
Assessment [20.7146855562825]
既存のディープニューラルネットワーク(DNN)はIQA問題に対処する上で大きな効果を示している。
画像品質予測のための階層的マルチスケール特徴を持つDNNを構築するためにピラミッド特徴学習を提案する。
提案するネットワークは、エンド・ツー・エンドの監視方法に最適化されている。
論文 参考訳(メタデータ) (2020-12-01T23:39:01Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。