Abstractive Meeting Summarization: A Survey
- URL: http://arxiv.org/abs/2208.04163v2
- Date: Tue, 25 Apr 2023 10:49:51 GMT
- Title: Abstractive Meeting Summarization: A Survey
- Authors: Virgile Rennard, Guokan Shang, Julie Hunter, Michalis Vazirgiannis
- Abstract summary: A system that could reliably identify and sum up the most important points of a conversation would be valuable in a wide variety of real-world contexts.
Recent advances in deep learning has significantly improved language generation systems, opening the door to improved forms of abstractive summarization.
We provide an overview of the challenges raised by the task of abstractive meeting summarization and of the data sets, models and evaluation metrics that have been used to tackle the problems.
- Score: 15.455647477995306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A system that could reliably identify and sum up the most important points of
a conversation would be valuable in a wide variety of real-world contexts, from
business meetings to medical consultations to customer service calls. Recent
advances in deep learning, and especially the invention of encoder-decoder
architectures, has significantly improved language generation systems, opening
the door to improved forms of abstractive summarization, a form of
summarization particularly well-suited for multi-party conversation. In this
paper, we provide an overview of the challenges raised by the task of
abstractive meeting summarization and of the data sets, models and evaluation
metrics that have been used to tackle the problems.
Related papers
- CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
We introduce CORAL, a benchmark designed to assess RAG systems in realistic multi-turn conversational settings.
CORAL includes diverse information-seeking conversations automatically derived from Wikipedia.
It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling.
arXiv Detail & Related papers (2024-10-30T15:06:32Z) - Increasing faithfulness in human-human dialog summarization with Spoken Language Understanding tasks [0.0]
We propose an exploration of how incorporating task-related information can enhance the summarization process.
Results show that integrating models with task-related information improves summary accuracy, even with varying word error rates.
arXiv Detail & Related papers (2024-09-16T08:15:35Z) - CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization [7.234196390284036]
This article summarizes the research on Transformer-based abstractive summarization for English dialogues.
We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality)
We find that while some challenges, like language, have seen considerable progress, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities.
arXiv Detail & Related papers (2024-06-11T17:30:22Z) - Long Dialog Summarization: An Analysis [28.223798877781054]
This work emphasizes the significance of creating coherent and contextually rich summaries for effective communication in various applications.
We explore current state-of-the-art approaches for long dialog summarization in different domains and benchmark metrics based evaluations show that one single model does not perform well across various areas for distinct summarization tasks.
arXiv Detail & Related papers (2024-02-26T19:35:45Z) - Investigating Consistency in Query-Based Meeting Summarization: A
Comparative Study of Different Embedding Methods [0.0]
Text Summarization is one of famous applications in Natural Language Processing (NLP) field.
It aims to automatically generate summary with important information based on a given context.
In this paper, we are inspired by "QMSum: A New Benchmark for Query-based Multi-domain Meeting Summarization" proposed by Microsoft.
We also propose our Locater model designed to extract relevant spans based on given transcript and query, which are then summarized by Summarizer model.
arXiv Detail & Related papers (2024-02-10T08:25:30Z) - SummIt: Iterative Text Summarization via ChatGPT [12.966825834765814]
We propose SummIt, an iterative text summarization framework based on large language models like ChatGPT.
Our framework enables the model to refine the generated summary iteratively through self-evaluation and feedback.
We also conduct a human evaluation to validate the effectiveness of the iterative refinements and identify a potential issue of over-correction.
arXiv Detail & Related papers (2023-05-24T07:40:06Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
We propose a novel paradigm that uses a textual interface to align external knowledge and eliminate redundant processes.
We demonstrate our paradigm in practice through MultiWOZ-Remake, including an interactive textual interface built for the MultiWOZ database.
arXiv Detail & Related papers (2023-05-23T05:48:21Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
We crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads.
We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data.
arXiv Detail & Related papers (2021-06-01T22:17:13Z) - Topic-Oriented Spoken Dialogue Summarization for Customer Service with
Saliency-Aware Topic Modeling [61.67321200994117]
In a customer service system, dialogue summarization can boost service efficiency by creating summaries for long spoken dialogues.
In this work, we focus on topic-oriented dialogue summarization, which generates highly abstractive summaries.
We propose a novel topic-augmented two-stage dialogue summarizer ( TDS) jointly with a saliency-aware neural topic model (SATM) for topic-oriented summarization of customer service dialogues.
arXiv Detail & Related papers (2020-12-14T07:50:25Z) - Unsupervised Summarization for Chat Logs with Topic-Oriented Ranking and
Context-Aware Auto-Encoders [59.038157066874255]
We propose a novel framework called RankAE to perform chat summarization without employing manually labeled data.
RankAE consists of a topic-oriented ranking strategy that selects topic utterances according to centrality and diversity simultaneously.
A denoising auto-encoder is designed to generate succinct but context-informative summaries based on the selected utterances.
arXiv Detail & Related papers (2020-12-14T07:31:17Z) - A Hierarchical Network for Abstractive Meeting Summarization with
Cross-Domain Pretraining [52.11221075687124]
We propose a novel abstractive summary network that adapts to the meeting scenario.
We design a hierarchical structure to accommodate long meeting transcripts and a role vector to depict the difference among speakers.
Our model outperforms previous approaches in both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-04-04T21:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.