Analyzing and modeling network travel patterns during the Ukraine
invasion using crowd-sourced pervasive traffic data
- URL: http://arxiv.org/abs/2208.04297v1
- Date: Mon, 8 Aug 2022 17:36:35 GMT
- Title: Analyzing and modeling network travel patterns during the Ukraine
invasion using crowd-sourced pervasive traffic data
- Authors: S. Travis Waller, Moeid Qurashi, Anna Sotnikova, Lavina Karva, Sai
Chand
- Abstract summary: In 2022, Ukraine is suffering an invasion which has resulted in acute impacts playing out over time and geography.
This paper examines the impact of the ongoing disruption on traffic behavior using analytics as well as zonal-based network models.
- Score: 3.2198211356287674
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In 2022, Ukraine is suffering an invasion which has resulted in acute impacts
playing out over time and geography. This paper examines the impact of the
ongoing disruption on traffic behavior using analytics as well as zonal-based
network models. The methodology is a data-driven approach that utilizes
obtained travel-time conditions within an evolutionary algorithm framework
which infers origin-destination demand values in an automated process based on
traffic assignment. Because of the automation of the implementation, numerous
daily models can be approximated for multiple cities. The novelty of this paper
versus the previously published core methodology includes an analysis to ensure
the obtained data is appropriate since some data sources were disabled due to
the ongoing disruption. Further, novelty includes a direct linkage of the
analysis to the timeline of disruptions to examine the interaction in a new
way. Finally, specific network metrics are identified which are particularly
suited for conceptualizing the impact of conflict disruptions on traffic
network conditions. The ultimate aim is to establish processes, concepts and
analysis to advance the broader activity of rapidly quantifying the traffic
impacts of conflict scenarios.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
We propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF)
FMPESTF is composed of spatial and temporal modules for down-sampling traffic data.
We introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios.
arXiv Detail & Related papers (2024-10-12T03:47:27Z) - Accounting for Work Zone Disruptions in Traffic Flow Forecasting [2.124091149604821]
We build over the convolutional graph neural network architecture and present a novel Graph Convolutional for Road Work Zones" model.
The model is evaluated on two data sets that minimize traffic in presence of work zones in the Commonwealth of Virginia.
arXiv Detail & Related papers (2024-07-16T05:48:24Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
We present a novel framework for modeling traffic congestion events over road networks.
Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events.
Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion.
arXiv Detail & Related papers (2020-05-15T04:22:18Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.