Accounting for Work Zone Disruptions in Traffic Flow Forecasting
- URL: http://arxiv.org/abs/2407.11407v1
- Date: Tue, 16 Jul 2024 05:48:24 GMT
- Title: Accounting for Work Zone Disruptions in Traffic Flow Forecasting
- Authors: Yuanjie Lu, Amarda Shehu, David Lattanzi,
- Abstract summary: We build over the convolutional graph neural network architecture and present a novel Graph Convolutional for Road Work Zones" model.
The model is evaluated on two data sets that minimize traffic in presence of work zones in the Commonwealth of Virginia.
- Score: 2.124091149604821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic speed forecasting is an important task in intelligent transportation system management. The objective of much of the current computational research is to minimize the difference between predicted and actual speeds, but information modalities other than speed priors are largely not taken into account. In particular, though state of the art performance is achieved on speed forecasting with graph neural network methods, these methods do not incorporate information on roadway maintenance work zones and their impacts on predicted traffic flows; yet, the impacts of construction work zones are of significant interest to roadway management agencies, because they translate to impacts on the local economy and public well-being. In this paper, we build over the convolutional graph neural network architecture and present a novel ``Graph Convolutional Network for Roadway Work Zones" model that includes a novel data fusion mechanism and a new heterogeneous graph aggregation methodology to accommodate work zone information in spatio-temporal dependencies among traffic states. The model is evaluated on two data sets that capture traffic flows in the presence of work zones in the Commonwealth of Virginia. Extensive comparative evaluation and ablation studies show that the proposed model can capture complex and nonlinear spatio-temporal relationships across a transportation corridor, outperforming baseline models, particularly when predicting traffic flow during a workzone event.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
We propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF)
FMPESTF is composed of spatial and temporal modules for down-sampling traffic data.
We introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios.
arXiv Detail & Related papers (2024-10-12T03:47:27Z) - An Attention-Based Multi-Context Convolutional Encoder-Decoder Neural Network for Work Zone Traffic Impact Prediction [6.14400858731508]
Work zone is one of the major causes of non-recurrent traffic congestion and road incidents.
We propose a data integration pipeline that enhances the utilization of work zone and traffic data from diversified platforms.
We introduce a novel deep learning model to predict the traffic speed and incident likelihood during planned work zone events.
arXiv Detail & Related papers (2024-05-31T17:38:49Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
We propose an improved traffic prediction method based on graph convolution deep learning algorithms.
We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns.
arXiv Detail & Related papers (2023-08-20T14:31:55Z) - Multi-graph Spatio-temporal Graph Convolutional Network for Traffic Flow
Prediction [0.5551832942032954]
Daily traffic flow prediction still faces challenges at network-wide toll stations.
In this paper, a correlative prediction method is proposed for daily traffic flow highway domain through flow-temporal deep learning.
Our method shows clear improvement in predictive accuracy than baselines and practical benefits in business.
arXiv Detail & Related papers (2023-08-10T14:20:43Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
arXiv Detail & Related papers (2023-03-10T02:22:33Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
We propose a model to predict traffic speed under the impact of construction work.
The model is based on the powerful attention-based,temporal graph convolution architecture but utilizes various channels to integrate different sources of information.
The model is evaluated on two benchmark datasets and a novel dataset we have collected over the bustling roadway's corner in Northern Virginia.
arXiv Detail & Related papers (2021-10-04T16:07:37Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.