論文の概要: EAFL: Towards Energy-Aware Federated Learning on Battery-Powered Edge
Devices
- arxiv url: http://arxiv.org/abs/2208.04505v1
- Date: Tue, 9 Aug 2022 02:15:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-10 13:14:56.606905
- Title: EAFL: Towards Energy-Aware Federated Learning on Battery-Powered Edge
Devices
- Title(参考訳): eafl:バッテリ駆動エッジデバイス上でのエネルギアウェアフェデレーション学習に向けて
- Authors: Amna Arouj and Ahmed M. Abdelmoniem
- Abstract要約: フェデレーテッド・ラーニング(FL)は、エッジデバイスがデータの集中化やプライバシーをデフォルトにすることなく、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする、新たに登場したAIのブランチである。
大規模なデプロイメントでは、クライアントの不均一性は、正確性、公平性、時間といったトレーニング品質に影響を与える規範です。
我々は、エネルギー消費を考慮し、異種ターゲット装置の参加を最大化するエネルギー対応FL選択法EAFLを開発した。
- 参考スコア(独自算出の注目度): 3.448338949969246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a newly emerged branch of AI that facilitates edge
devices to collaboratively train a global machine learning model without
centralizing data and with privacy by default. However, despite the remarkable
advancement, this paradigm comes with various challenges. Specifically, in
large-scale deployments, client heterogeneity is the norm which impacts
training quality such as accuracy, fairness, and time. Moreover, energy
consumption across these battery-constrained devices is largely unexplored and
a limitation for wide-adoption of FL. To address this issue, we develop EAFL,
an energy-aware FL selection method that considers energy consumption to
maximize the participation of heterogeneous target devices. \scheme is a
power-aware training algorithm that cherry-picks clients with higher battery
levels in conjunction with its ability to maximize the system efficiency. Our
design jointly minimizes the time-to-accuracy and maximizes the remaining
on-device battery levels. \scheme improves the testing model accuracy by up to
85\% and decreases the drop-out of clients by up to 2.45$\times$.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、エッジデバイスがデータの集中化やプライバシーをデフォルトにすることなく、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする、新たに登場したAIのブランチである。
しかし、顕著な進歩にもかかわらず、このパラダイムには様々な課題が伴う。
具体的には、大規模なデプロイメントにおいて、クライアントの不均一性は、正確性、公平性、時間といったトレーニング品質に影響を与える規範です。
さらに、これらのバッテリに制約のあるデバイス全体のエネルギー消費量は、ほとんど未調査であり、flの幅広い最適化には限界がある。
この問題に対処するために、エネルギー消費を考慮し、異種ターゲット装置の参加を最大化するエネルギー対応FL選択法EAFLを開発した。
\schemeは、システム効率を最大化する能力とともに、より高いバッテリレベルのクライアントをチェリーピックするパワーアウェアトレーニングアルゴリズムである。
我々の設計は、時間と精度を両立させ、残りのオンデバイスバッテリレベルを最大化する。
\schemeはテストモデルの精度を最大85\%改善し、クライアントのドロップアウトを最大2.45$\times$に削減する。
関連論文リスト
- A Green Multi-Attribute Client Selection for Over-The-Air Federated Learning: A Grey-Wolf-Optimizer Approach [5.277822313069301]
OTA(Over-the-air)FLは、デバイス間直接接続や集中型サーバを使わずにモデルアップデートを広めることによって、これらの課題に対処するために導入された。
OTA-FLは、エネルギー消費の増大とネットワーク遅延の制限を引き起こした。
本稿では,グレイオオカミ(GWO)を用いた多属性クライアント選択フレームワークを提案し,各ラウンドの参加者数を戦略的に制御する。
論文 参考訳(メタデータ) (2024-09-16T20:03:57Z) - E-QUARTIC: Energy Efficient Edge Ensemble of Convolutional Neural Networks for Resource-Optimized Learning [9.957458251671486]
Convolutional Neural Networks(CNN)のようなモデルを組み立てると、メモリとコンピューティングのオーバーヘッドが高くなり、組み込みシステムへのデプロイが妨げられる。
人工知能(AI)をベースとした組込みシステムを対象としたCNNのアンサンブルを構築するための,新しいエネルギー効率の良いエッジ組立フレームワークであるE-QUARTICを提案する。
論文 参考訳(メタデータ) (2024-09-12T19:30:22Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
フェデレートラーニング(FL)は,ネットワークエッジ上での分散ディープラーニングのプライバシ強化を実現する上で,有効なテクニックとなっている。
本稿では,既存のFLベンチマークを補完するFLEdgeを提案する。
論文 参考訳(メタデータ) (2023-06-08T13:11:20Z) - FedLE: Federated Learning Client Selection with Lifespan Extension for
Edge IoT Networks [34.63384007690422]
Federated Learning(FL)は、IoT(Internet of Things)デバイスによってエッジで生成された巨大なデータによる予測モデリングのための分散およびプライバシ保護学習フレームワークである。
IoTでFLが広く採用されるのを防ぐ大きな課題のひとつは、IoTデバイスの広範な電源制約だ。
我々はエッジIoTネットワークの拡張を可能にするエネルギー効率の高いクライアント選択フレームワークであるFedLEを提案する。
論文 参考訳(メタデータ) (2023-02-14T19:41:24Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
この問題に対処するクライアント包摂的フェデレーション学習手法であるInclusiveFLを提案する。
InclusiveFLの中核となる考え方は、異なるサイズのモデルを異なる計算能力を持つクライアントに割り当てることである。
また,異なる大きさの複数の局所モデル間で知識を共有する効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T13:03:27Z) - Exploring Deep Reinforcement Learning-Assisted Federated Learning for
Online Resource Allocation in EdgeIoT [53.68792408315411]
フェデレートラーニング(FL)は、モバイルエッジコンピューティングベースのInternet of Thing(EdgeIoT)における盗聴攻撃からデータトレーニングプライバシを保護するために、ますます検討されている。
本研究では,連続領域における最適精度とエネルギー収支を達成するために,FLDLT3フレームワークを提案する。
その結果、FL-DLT3は100回未満の高速収束を実現し、FLの精度-エネルギー消費比は既存の最先端ベンチマークと比較して51.8%向上した。
論文 参考訳(メタデータ) (2022-02-15T13:36:15Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning(MEL)は、エッジデバイス上で機械学習(ML)モデルの分散トレーニングを特徴とする、協調学習パラダイムである。
MELでは、異なるデータセットで複数の学習タスクが共存する可能性がある。
本稿では, エネルギー消費, 精度, 解複雑性のトレードオフを容易にする軽量なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-02T07:37:10Z) - Threshold-Based Data Exclusion Approach for Energy-Efficient Federated
Edge Learning [4.25234252803357]
Federated Edge Learning (FEEL) は次世代無線ネットワークにおいて有望な分散学習技術である。
FEELは、モデルトレーニングラウンド中に消費される電力により、エネルギー制約された参加機器の寿命を大幅に短縮する可能性がある。
本稿では,FEELラウンドにおける計算および通信エネルギー消費を最小化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T13:34:40Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Accelerating Federated Learning over Reliability-Agnostic Clients in
Mobile Edge Computing Systems [15.923599062148135]
フェデレーション学習は、AIアプリケーションを促進するための、将来性のあるプライバシ保護アプローチとして登場した。
MECアーキテクチャと統合された場合、FLの効率性と効率を最適化することは依然として大きな課題である。
本稿では,MECアーキテクチャのために,HybridFLと呼ばれる多層フェデレート学習プロトコルを設計する。
論文 参考訳(メタデータ) (2020-07-28T17:35:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。