論文の概要: BEFL: Balancing Energy Consumption in Federated Learning for Mobile Edge IoT
- arxiv url: http://arxiv.org/abs/2412.03950v1
- Date: Thu, 05 Dec 2024 07:58:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:39:21.906546
- Title: BEFL: Balancing Energy Consumption in Federated Learning for Mobile Edge IoT
- Title(参考訳): BEFL: モバイルエッジIoTのためのフェデレーションラーニングにおけるエネルギー消費のバランス
- Authors: Zehao Ju, Tongquan Wei, Fuke Shen,
- Abstract要約: Mobile Edge IoT(MEIoT)では、トレーニングと通信プロセスはデバイスの限られたバッテリーリソースを著しく減らすことができる。
我々は,グローバルモデル精度の向上,全エネルギー消費の最小化,デバイス間のエネルギー利用格差の低減という,3つの目標のバランスを図るための共同最適化フレームワークであるBEFLを提案する。
実験の結果、BEFLはグローバルモデル精度を1.6%改善し、エネルギー消費のばらつきを72.7%低減し、既存の方法と比較して総エネルギー消費を28.2%低減することがわかった。
- 参考スコア(独自算出の注目度): 2.6872737601772956
- License:
- Abstract: Federated Learning (FL) is a privacy-preserving distributed learning paradigm designed to build a highly accurate global model. In Mobile Edge IoT (MEIoT), the training and communication processes can significantly deplete the limited battery resources of devices. Existing research primarily focuses on reducing overall energy consumption, but this may inadvertently create energy consumption imbalances, leading to the premature dropout of energy-sensitive devices.To address these challenges, we propose BEFL, a joint optimization framework aimed at balancing three objectives: enhancing global model accuracy, minimizing total energy consumption, and reducing energy usage disparities among devices. First, taking into account the communication constraints of MEIoT and the heterogeneity of devices, we employed the Sequential Least Squares Programming (SLSQP) algorithm for the rational allocation of communication resources. Based on this, we introduce a heuristic client selection algorithm that combines cluster partitioning with utility-driven approaches to alleviate both the total energy consumption of all devices and the discrepancies in energy usage.Furthermore, we utilize the proposed heuristic client selection algorithm as a template for offline imitation learning during pre-training, while adopting a ranking-based reinforcement learning approach online to further boost training efficiency. Our experiments reveal that BEFL improves global model accuracy by 1.6\%, reduces energy consumption variance by 72.7\%, and lowers total energy consumption by 28.2\% compared to existing methods. The relevant code can be found at \href{URL}{https://github.com/juzehao/BEFL}.
- Abstract(参考訳): Federated Learning(FL)は、高度に正確なグローバルモデルを構築するために設計された、プライバシ保護の分散学習パラダイムである。
Mobile Edge IoT(MEIoT)では、トレーニングと通信プロセスはデバイスの限られたバッテリーリソースを著しく減らすことができる。
既存の研究は主にエネルギー消費の削減に重点を置いているが、これによってエネルギー消費の不均衡が必然的に発生し、エネルギー感受性デバイスが早期に減少する可能性がある。これらの課題に対処するため、我々は、グローバルモデル精度の向上、総エネルギー消費の最小化、デバイス間のエネルギー消費格差の低減という3つの目標のバランスを図る共同最適化フレームワークであるBEFLを提案する。
まず,MEIoTの通信制約とデバイスの不均一性を考慮し,SLSQP(Sequential Least Squares Programming)アルゴリズムを用いて通信資源の合理的割り当てを行った。
これに基づいて、クラスタパーティショニングとユーティリティ駆動のアプローチを組み合わせたヒューリスティッククライアント選択アルゴリズムを導入し、全デバイスの総エネルギー消費とエネルギー使用量の差の両方を軽減するとともに、事前学習中にオフライン模倣学習のテンプレートとして提案したヒューリスティッククライアント選択アルゴリズムを、オンラインのランキングベースの強化学習アプローチを採用し、トレーニング効率をさらに向上させる。
実験の結果,BEFLはグローバルモデル精度を1.6倍に改善し,エネルギー消費のばらつきを72.7倍に低減し,エネルギー総消費を28.2倍に低減することがわかった。
関連するコードは \href{URL}{https://github.com/juzehao/BEFL} にある。
関連論文リスト
- Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - A Safe Deep Reinforcement Learning Approach for Energy Efficient
Federated Learning in Wireless Communication Networks [37.71759652012053]
Federated Learning(FL)は、分散AI技術を保存する重要なプライバシとして登場した。
現在FLで行われている努力にもかかわらず、その環境への影響は依然として未解決の問題である。
本稿では,必要な総エネルギーを最小化するために,関連機器の計算・通信資源のオーケストレーションを提案する。
論文 参考訳(メタデータ) (2023-08-21T12:02:54Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - EAFL: Towards Energy-Aware Federated Learning on Battery-Powered Edge
Devices [3.448338949969246]
フェデレーテッド・ラーニング(FL)は、エッジデバイスがデータの集中化やプライバシーをデフォルトにすることなく、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする、新たに登場したAIのブランチである。
大規模なデプロイメントでは、クライアントの不均一性は、正確性、公平性、時間といったトレーニング品質に影響を与える規範です。
我々は、エネルギー消費を考慮し、異種ターゲット装置の参加を最大化するエネルギー対応FL選択法EAFLを開発した。
論文 参考訳(メタデータ) (2022-08-09T02:15:45Z) - Energy-Aware Edge Association for Cluster-based Personalized Federated
Learning [2.3262774900834606]
無線ネットワーク上のフェデレートラーニングは、プライバシ保存モデルトレーニングのために、ネットワークエッジにおけるユビキタスインテリジェンスを活用することによって、データ意識のサービスを可能にする。
我々は、類似した好みのユーザデバイスをグループ化するクラスタ化フェデレーション学習を提案し、各クラスタにパーソナライズされたモデルを提供する。
モデル精度、通信資源割り当て、エネルギー消費を共同で考慮し、精度-コストトレードオフ最適化問題を定式化する。
論文 参考訳(メタデータ) (2022-02-06T07:58:41Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning(MEL)は、エッジデバイス上で機械学習(ML)モデルの分散トレーニングを特徴とする、協調学習パラダイムである。
MELでは、異なるデータセットで複数の学習タスクが共存する可能性がある。
本稿では, エネルギー消費, 精度, 解複雑性のトレードオフを容易にする軽量なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-02T07:37:10Z) - Fine-Grained Data Selection for Improved Energy Efficiency of Federated
Edge Learning [2.924868086534434]
フェデレーションエッジ学習(FEEL)では、ネットワークエッジのエネルギー制約されたデバイスは、ローカル機械学習モデルをトレーニングおよびアップロードする際にかなりのエネルギーを消費する。
本研究は, ローカルトレーニングデータ, 利用可能な計算, 通信資源を共同で検討し, エネルギー効率の高い FEEL の新たなソリューションを提案する。
論文 参考訳(メタデータ) (2021-06-20T10:51:32Z) - Threshold-Based Data Exclusion Approach for Energy-Efficient Federated
Edge Learning [4.25234252803357]
Federated Edge Learning (FEEL) は次世代無線ネットワークにおいて有望な分散学習技術である。
FEELは、モデルトレーニングラウンド中に消費される電力により、エネルギー制約された参加機器の寿命を大幅に短縮する可能性がある。
本稿では,FEELラウンドにおける計算および通信エネルギー消費を最小化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T13:34:40Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
巨大なモバイルエッジデバイス上でのフェデレーション学習(FL)は、多数のインテリジェントなモバイルアプリケーションのための新たな地平を開く。
FLは、定期的なグローバル同期と継続的なローカルトレーニングにより、参加するデバイスに膨大な通信と計算負荷を課す。
フレキシブルな通信圧縮を可能にする収束保証FLアルゴリズムを開発。
論文 参考訳(メタデータ) (2020-12-22T02:54:18Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。