論文の概要: Emotion Detection From Tweets Using a BERT and SVM Ensemble Model
- arxiv url: http://arxiv.org/abs/2208.04547v1
- Date: Tue, 9 Aug 2022 05:32:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-10 12:32:24.933566
- Title: Emotion Detection From Tweets Using a BERT and SVM Ensemble Model
- Title(参考訳): BERTとSVMアンサンブルモデルを用いたツイートからの感情検出
- Authors: Ionu\c{t}-Alexandru Albu, Stelian Sp\^inu
- Abstract要約: 本稿では,感情認識のための支援ベクトルマシンとトランスフォーマーからの双方向表現について検討する。
2つのBERTモデルとSVMモデルを組み合わせた新しいアンサンブルモデルを提案する。
実験の結果,提案モデルでは,ツイート中の感情認識の精度が0.91であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automatic identification of emotions expressed in Twitter data has a wide
range of applications. We create a well-balanced dataset by adding a neutral
class to a benchmark dataset consisting of four emotions: fear, sadness, joy,
and anger. On this extended dataset, we investigate the use of Support Vector
Machine (SVM) and Bidirectional Encoder Representations from Transformers
(BERT) for emotion recognition. We propose a novel ensemble model by combining
the two BERT and SVM models. Experiments show that the proposed model achieves
a state-of-the-art accuracy of 0.91 on emotion recognition in tweets.
- Abstract(参考訳): Twitterデータで表現された感情の自動識別には幅広い応用がある。
不安、悲しみ、喜び、怒りという4つの感情からなるベンチマークデータセットに中立クラスを追加することで、バランスのとれたデータセットを作成します。
この拡張データセットでは、感情認識にSVM(Support Vector Machine)とBERT(Bidirectional Encoder Representations from Transformers)を用いることを検討した。
2つのBERTモデルとSVMモデルを組み合わせた新しいアンサンブルモデルを提案する。
実験の結果,提案モデルでは,ツイート中の感情認識の精度が0.91であることがわかった。
関連論文リスト
- MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - Emotion Detection in Reddit: Comparative Study of Machine Learning and Deep Learning Techniques [0.0]
本研究は,GoEmotionsデータセットを利用したテキストによる感情検出に焦点を当てた。
このタスクには、6つの機械学習モデル、3つのアンサンブルモデル、Long Short-Term Memory(LSTM)モデルなど、さまざまなモデルを使用しました。
結果は、Stacking分類器が他のモデルよりも精度と性能が優れていることを示している。
論文 参考訳(メタデータ) (2024-11-15T16:28:25Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
人間の感情が感情の予測において有意であると考えられる特徴とどのように相関するかを検討する。
EmoTriggerを用いて、感情のトリガーを識別する大規模言語モデルの能力を評価する。
分析の結果、感情のトリガーは感情予測モデルにとって健全な特徴ではなく、様々な特徴と感情検出のタスクの間に複雑な相互作用があることが判明した。
論文 参考訳(メタデータ) (2023-11-16T06:20:13Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - Persian Emotion Detection using ParsBERT and Imbalanced Data Handling
Approaches [0.0]
EmoParsとArmanEmoは、ペルシャ語のための新しい人間のラベル付き感情データセットである。
EmoParsを評価し,ArmanEmoと比較した。
我々のモデルはArmanEmoとEmoParsでそれぞれ0.81と0.76のマクロ平均F1スコアに達する。
論文 参考訳(メタデータ) (2022-11-15T10:22:49Z) - DeepEmotex: Classifying Emotion in Text Messages using Deep Transfer
Learning [0.0]
テキスト中の感情を検出する効果的なシーケンシャルトランスファー学習法としてDeepEmotexを提案する。
キュレートされたTwitterデータセットとベンチマークデータセットの両方を用いて実験を行った。
DeepEmotexモデルは、テストデータセット上でのマルチクラスの感情分類において91%以上の精度を達成する。
論文 参考訳(メタデータ) (2022-06-12T03:23:40Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - MEmoBERT: Pre-training Model with Prompt-based Learning for Multimodal
Emotion Recognition [118.73025093045652]
マルチモーダル感情認識のための事前学習モデル textbfMEmoBERT を提案する。
従来の「訓練前、微妙な」パラダイムとは異なり、下流の感情分類タスクをマスク付きテキスト予測として再構成するプロンプトベースの手法を提案する。
提案するMEMOBERTは感情認識性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-10-27T09:57:00Z) - Multimodal Emotion Recognition with High-level Speech and Text Features [8.141157362639182]
本稿では,wav2vec 2.0音声特徴量に対する感情認識を実現するために,新しいクロス表現音声モデルを提案する。
また、Transformerベースのモデルを用いて抽出したテキスト特徴から感情を認識するために、CNNベースのモデルをトレーニングする。
本手法は,4クラス分類問題においてIEMOCAPデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-29T07:08:40Z) - Towards Emotion Recognition in Hindi-English Code-Mixed Data: A
Transformer Based Approach [0.0]
感情検出のためのラベル付きhinglishデータセットを提案する。
ヒンディー語と英語の混成ツイートの感情を検出するための深層学習に基づくアプローチに注目した。
論文 参考訳(メタデータ) (2021-02-19T14:07:20Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。