論文の概要: Emotion Detection in Reddit: Comparative Study of Machine Learning and Deep Learning Techniques
- arxiv url: http://arxiv.org/abs/2411.10328v1
- Date: Fri, 15 Nov 2024 16:28:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:30.446484
- Title: Emotion Detection in Reddit: Comparative Study of Machine Learning and Deep Learning Techniques
- Title(参考訳): Redditにおける感情検出:機械学習とディープラーニング技術の比較研究
- Authors: Maliheh Alaeddini,
- Abstract要約: 本研究は,GoEmotionsデータセットを利用したテキストによる感情検出に焦点を当てた。
このタスクには、6つの機械学習モデル、3つのアンサンブルモデル、Long Short-Term Memory(LSTM)モデルなど、さまざまなモデルを使用しました。
結果は、Stacking分類器が他のモデルよりも精度と性能が優れていることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Emotion detection is pivotal in human communication, as it significantly influences behavior, relationships, and decision-making processes. This study concentrates on text-based emotion detection by leveraging the GoEmotions dataset, which annotates Reddit comments with 27 distinct emotions. These emotions are subsequently mapped to Ekman's six basic categories: joy, anger, fear, sadness, disgust, and surprise. We employed a range of models for this task, including six machine learning models, three ensemble models, and a Long Short-Term Memory (LSTM) model to determine the optimal model for emotion detection. Results indicate that the Stacking classifier outperforms other models in accuracy and performance. We also benchmark our models against EmoBERTa, a pre-trained emotion detection model, with our Stacking classifier proving more effective. Finally, the Stacking classifier is deployed via a Streamlit web application, underscoring its potential for real-world applications in text-based emotion analysis.
- Abstract(参考訳): 感情検出は人間のコミュニケーションにおいて重要な要素であり、行動、関係、意思決定プロセスに大きな影響を及ぼす。
本研究は, Redditコメントを27種類の感情で注釈付けするGoEmotionsデータセットを活用することで, テキストベースの感情検出に集中する。
これらの感情は、エクマンの6つの基本的なカテゴリー(喜び、怒り、恐怖、悲しみ、嫌悪、驚き)にマッピングされる。
このタスクには,6つの機械学習モデル,3つのアンサンブルモデル,Long Short-Term Memory(LSTM)モデルなど,さまざまなモデルを用いて感情検出の最適なモデルを決定しました。
結果は、Stacking分類器が他のモデルよりも精度と性能が優れていることを示している。
また、トレーニング済みの感情検出モデルであるEmoBERTaに対してモデルをベンチマークし、Stacking分類器をより効果的にします。
最後に、Stacking分類器はStreamlit Webアプリケーションを介してデプロイされ、テキストベースの感情分析における実際のアプリケーションの可能性を強調している。
関連論文リスト
- MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - Expansion Quantization Network: An Efficient Micro-emotion Annotation and Detection Framework [2.0209172586699173]
本稿では,ラベル値をエネルギー強度レベルにマッピングする全ラベルおよびトレーニングセットラベル回帰法を提案する。
これにより、マイクロ感情検出とアノテーションのための感情量子化ネットワーク(EQN)フレームワークが確立された。
EQNフレームワークは、エネルギーレベルスコアで自動マイクロ感情アノテーションを実現する最初のフレームワークである。
論文 参考訳(メタデータ) (2024-11-09T12:09:26Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
人間の感情が感情の予測において有意であると考えられる特徴とどのように相関するかを検討する。
EmoTriggerを用いて、感情のトリガーを識別する大規模言語モデルの能力を評価する。
分析の結果、感情のトリガーは感情予測モデルにとって健全な特徴ではなく、様々な特徴と感情検出のタスクの間に複雑な相互作用があることが判明した。
論文 参考訳(メタデータ) (2023-11-16T06:20:13Z) - Implicit Design Choices and Their Impact on Emotion Recognition Model
Development and Evaluation [5.534160116442057]
感情の主観性は、正確で堅牢な計算モデルを開発する上で大きな課題を生じさせる。
この論文は、多様なデータセットの収集から始まる感情認識の批判的な側面を調べる。
非表現的トレーニングデータの課題に対処するため、この研究はマルチモーダルストレス感情データセットを収集する。
論文 参考訳(メタデータ) (2023-09-06T02:45:42Z) - Computer Vision Estimation of Emotion Reaction Intensity in the Wild [1.5481864635049696]
本稿では,新たに導入された感情反応強度(ERI)推定課題について述べる。
視覚領域で訓練された4つのディープニューラルネットワークと、感情反応強度を予測するために視覚的特徴と音声的特徴の両方で訓練されたマルチモーダルモデルを開発した。
論文 参考訳(メタデータ) (2023-03-19T19:09:41Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Fine-Grained Emotion Prediction by Modeling Emotion Definitions [26.098917459551167]
本研究では,感情定義モデルを用いて,テキスト中の感情の微粒化を予測するための新しいフレームワークを提案する。
我々のモデルは、詳細な感情データセットGoEmotionsの既存の最先端よりも優れています。
論文 参考訳(メタデータ) (2021-07-26T12:11:18Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
本稿では、上記の問題に対処するため、感情を埋め込んだモダリティ変換可能なモデルを提案する。
我々のモデルは感情カテゴリーのほとんどで最先端のパフォーマンスを達成する。
私たちのモデルは、目に見えない感情に対するゼロショットと少数ショットのシナリオにおいて、既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-21T06:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。