Statistical Properties of the log-cosh Loss Function Used in Machine Learning
- URL: http://arxiv.org/abs/2208.04564v4
- Date: Fri, 15 Mar 2024 21:58:47 GMT
- Title: Statistical Properties of the log-cosh Loss Function Used in Machine Learning
- Authors: Resve A. Saleh, A. K. Md. Ehsanes Saleh,
- Abstract summary: We present the distribution function from which the log-cosh loss arises.
We also examine the use of the log-cosh function for quantile regression.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper analyzes a popular loss function used in machine learning called the log-cosh loss function. A number of papers have been published using this loss function but, to date, no statistical analysis has been presented in the literature. In this paper, we present the distribution function from which the log-cosh loss arises. We compare it to a similar distribution, called the Cauchy distribution, and carry out various statistical procedures that characterize its properties. In particular, we examine its associated pdf, cdf, likelihood function and Fisher information. Side-by-side we consider the Cauchy and Cosh distributions as well as the MLE of the location parameter with asymptotic bias, asymptotic variance, and confidence intervals. We also provide a comparison of robust estimators from several other loss functions, including the Huber loss function and the rank dispersion function. Further, we examine the use of the log-cosh function for quantile regression. In particular, we identify a quantile distribution function from which a maximum likelihood estimator for quantile regression can be derived. Finally, we compare a quantile M-estimator based on log-cosh with robust monotonicity against another approach to quantile regression based on convolutional smoothing.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - A Robust Quantile Huber Loss With Interpretable Parameter Adjustment In
Distributional Reinforcement Learning [19.89141873890568]
This paper introduces a generalized quantile Huber loss function derived from Wasserstein distance (WD) calculation.
Compared to the classical quantile Huber loss, this innovative loss function enhances robustness against outliers.
Empirical tests on Atari games, a common application in distributional RL, and a recent hedging strategy using distributional RL, validate our proposed loss function.
arXiv Detail & Related papers (2024-01-04T15:51:49Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Estimation of a regression function on a manifold by fully connected
deep neural networks [6.058868817939519]
The rate of convergence of least squares estimates based on fully connected spaces of deep neural networks with ReLU activation function is analyzed.
It is shown that in case that the distribution of the predictor variable is concentrated on a manifold, these estimates achieve a rate of convergence which depends on the dimension of the manifold and not on the number of components of the predictor variable.
arXiv Detail & Related papers (2021-07-20T14:43:59Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
We study the posterior contraction rates of a Bayesian method with Gaussian process priors in nonparametric regression.
For a general class of kernels, we establish convergence rates of the posterior measure of the regression function and its derivatives.
Our proof shows that, under certain conditions, to any convergence rate of Bayes estimators there corresponds the same convergence rate of the posterior distributions.
arXiv Detail & Related papers (2020-11-27T19:11:56Z) - Empirical Strategy for Stretching Probability Distribution in
Neural-network-based Regression [5.35308390309106]
In regression analysis under artificial neural networks, the prediction performance depends on determining the appropriate weights between layers.
We proposed weighted empirical stretching (WES) as a novel loss function to increase the overlap area of the two distributions.
The improved results in RMSE for the extreme domain are expected to be utilized for prediction of abnormal events in non-linear complex systems.
arXiv Detail & Related papers (2020-09-08T06:08:14Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z) - Statistical Inference for Model Parameters in Stochastic Gradient
Descent [45.29532403359099]
gradient descent coefficients (SGD) has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency.
We investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain conditions.
arXiv Detail & Related papers (2016-10-27T07:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.