論文の概要: Stronger Privacy Amplification by Shuffling for R\'enyi and Approximate
Differential Privacy
- arxiv url: http://arxiv.org/abs/2208.04591v1
- Date: Tue, 9 Aug 2022 08:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-10 12:28:11.874253
- Title: Stronger Privacy Amplification by Shuffling for R\'enyi and Approximate
Differential Privacy
- Title(参考訳): r\'enyiのシャッフルによるより強力なプライバシー増幅と近似微分プライバシー
- Authors: Vitaly Feldman and Audra McMillan and Kunal Talwar
- Abstract要約: このモデルにおける重要な結果は、ランダムにランダム化されたデータをランダムにシャッフルすると、差分プライバシー保証が増幅されることである。
このような増幅は、匿名でデータが提供されるシステムにおいて、はるかに強力なプライバシー保証を意味する。
本研究では,理論的にも数値的にも,アートプライバシの増幅状態を改善する。
- 参考スコア(独自算出の注目度): 47.84572684634579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The shuffle model of differential privacy has gained significant interest as
an intermediate trust model between the standard local and central models
[EFMRTT19; CSUZZ19]. A key result in this model is that randomly shuffling
locally randomized data amplifies differential privacy guarantees. Such
amplification implies substantially stronger privacy guarantees for systems in
which data is contributed anonymously [BEMMRLRKTS17].
In this work, we improve the state of the art privacy amplification by
shuffling results both theoretically and numerically. Our first contribution is
the first asymptotically optimal analysis of the R\'enyi differential privacy
parameters for the shuffled outputs of LDP randomizers. Our second contribution
is a new analysis of privacy amplification by shuffling. This analysis improves
on the techniques of [FMT20] and leads to tighter numerical bounds in all
parameter settings.
- Abstract(参考訳): 差分プライバシーのシャッフルモデルは、標準的なローカルモデルと中央モデル(EFMRTT19; CSUZZ19)の中間信頼モデルとして注目されている。
このモデルの主な結果は、ランダムにランダムにランダムにデータをシャッフルすることで、差分プライバシーの保証を増幅する。
このような増幅は、データが匿名で貢献されるシステムにとって、はるかに強力なプライバシー保証を意味する[BEMMRLRKTS17]。
本研究では,理論と数値の両方で結果のシャッフルを行うことで,美術プライバシ増幅の状況を改善する。
最初の貢献は、ldpランダム化器のシャッフル出力に対するr\'enyi微分プライバシーパラメータの漸近的最適解析である。
第2の貢献は、シャッフルによるプライバシーの増幅に関する新たな分析です。
この分析は[FMT20]の技法を改良し、全てのパラメータ設定においてより厳密な数値境界をもたらす。
関連論文リスト
- Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
サブサンプリングによる増幅は、差分プライバシーを持つ機械学習の主要なプリミティブの1つである。
本稿では、メカニズム固有の保証を導出するための最初の一般的なフレームワークを提案する。
サブサンプリングが複数のユーザのプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2024-03-07T19:36:05Z) - Shifted Interpolation for Differential Privacy [6.1836947007564085]
雑音勾配降下とその変種は、微分プライベート機械学習の主要なアルゴリズムである。
本稿では、$f$差分プライバシの統一化フレームワークにおいて、"corollary によるプライバシ増幅" 現象を確立する。
これは、強力な凸最適化の基礎的な設定において、最初の正確なプライバシー分析につながる。
論文 参考訳(メタデータ) (2024-03-01T04:50:04Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
パーソナライズされたプライバシパラメータで$(epsilon_i,delta_i)$-PLDP設定をシャッフルする方法を示す。
shuffled $(epsilon_i,delta_i)$-PLDP process approximately saves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
論文 参考訳(メタデータ) (2023-12-22T02:31:46Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Renyi Differential Privacy of the Subsampled Shuffle Model in
Distributed Learning [7.197592390105457]
クライアントは、プライバシを必要とするサーバとのインタラクションを通じて、学習モデルを反復的に構築する分散学習フレームワークで、プライバシを研究する。
最適化とフェデレートラーニング(FL)パラダイムによって動機付けられ、各ラウンドで少数のデータサンプルがランダムにサブサンプリングされた場合に焦点を当てる。
より強力なローカルプライバシ保証を得るために,各クライアントがローカルディファレンシャル・プライベート(LDP)機構を用いて応答をランダム化するシャッフルプライバシ・モデルを用いてこれを検証した。
論文 参考訳(メタデータ) (2021-07-19T11:43:24Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - Privacy Amplification via Random Check-Ins [38.72327434015975]
Differentially Private Gradient Descent (DP-SGD) は、多くのアプリケーションにおいて、機密データを学習するための基本的な構成要素となっている。
本稿では,DP-SGD のような反復的手法を,多くのデバイス(クライアント)に分散したフェデレーションラーニング(FL)の設定において実施することに焦点を当てる。
当社の主なコントリビューションは,各クライアントがローカルかつ独立に行うランダムな参加決定にのみ依存する,Emphrandom Check-in分散プロトコルです。
論文 参考訳(メタデータ) (2020-07-13T18:14:09Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。