論文の概要: $(ε, δ)$-Differentially Private Partial Least Squares Regression
- arxiv url: http://arxiv.org/abs/2412.09164v1
- Date: Thu, 12 Dec 2024 10:49:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:34:10.718426
- Title: $(ε, δ)$-Differentially Private Partial Least Squares Regression
- Title(参考訳): $(ε, δ)$-differentially private partial Least Squares Regression
- Authors: Ramin Nikzad-Langerodi, Mohit Kumar, Du Nguyen Duy, Mahtab Alghasi,
- Abstract要約: 我々は,モデルに基づくデータのプライバシーを確保するために,$(epsilon, delta)$-differentially private PLS (edPLS)アルゴリズムを提案する。
実験により、EDPLSはトレーニングデータに固有の変動源を回復することを目的とした、効果的なプライバシー攻撃を施すことが示されている。
- 参考スコア(独自算出の注目度): 1.8666451604540077
- License:
- Abstract: As data-privacy requirements are becoming increasingly stringent and statistical models based on sensitive data are being deployed and used more routinely, protecting data-privacy becomes pivotal. Partial Least Squares (PLS) regression is the premier tool for building such models in analytical chemistry, yet it does not inherently provide privacy guarantees, leaving sensitive (training) data vulnerable to privacy attacks. To address this gap, we propose an $(\epsilon, \delta)$-differentially private PLS (edPLS) algorithm, which integrates well-studied and theoretically motivated Gaussian noise-adding mechanisms into the PLS algorithm to ensure the privacy of the data underlying the model. Our approach involves adding carefully calibrated Gaussian noise to the outputs of four key functions in the PLS algorithm: the weights, scores, $X$-loadings, and $Y$-loadings. The noise variance is determined based on the global sensitivity of each function, ensuring that the privacy loss is controlled according to the $(\epsilon, \delta)$-differential privacy framework. Specifically, we derive the sensitivity bounds for each function and use these bounds to calibrate the noise added to the model components. Experimental results demonstrate that edPLS effectively renders privacy attacks, aimed at recovering unique sources of variability in the training data, ineffective. Application of edPLS to the NIR corn benchmark dataset shows that the root mean squared error of prediction (RMSEP) remains competitive even at strong privacy levels (i.e., $\epsilon=1$), given proper pre-processing of the corresponding spectra. These findings highlight the practical utility of edPLS in creating privacy-preserving multivariate calibrations and for the analysis of their privacy-utility trade-offs.
- Abstract(参考訳): データプライバシ要件がますます厳しくなり、センシティブなデータに基づく統計モデルがデプロイされ、より日常的に使用されるようになると、データプライバシ保護が重要になります。
パーシャルリーストスクエア(PLS)回帰は、分析化学においてそのようなモデルを構築するための最重要ツールであるが、本質的にプライバシ保証を提供しておらず、機密データ(トレーニング)はプライバシ攻撃に弱いままである。
このギャップに対処するために、よく研究され理論的に動機付けられたガウスノイズ付加機構をPSSアルゴリズムに統合し、モデルの基礎となるデータのプライバシーを確保するために、$(\epsilon, \delta)$-differentially private PLS (edPLS)アルゴリズムを提案する。
PLSアルゴリズムでは,重み,スコア,$X$-loadings,$Y$-loadingsという4つの重要な関数の出力にガウス雑音を慎重に調整する。
ノイズ分散は各関数のグローバルな感度に基づいて決定され、プライバシー損失は$(\epsilon, \delta)$-differential privacy frameworkに従って制御される。
具体的には、各関数に対する感度境界を導出し、これらの境界を用いてモデル成分に付加される雑音を校正する。
実験の結果、EDPLSはトレーニングデータに固有の変動源を回復することを目的としたプライバシー攻撃を効果的に行うことが示されている。
NIRコーンベンチマークデータセットへのEDPLSの適用は、対応するスペクトルの適切な前処理を条件に、強力なプライバシレベル(例えば$\epsilon=1$)であっても、ルート平均2乗誤差(RMSEP)が競争力を維持することを示している。
これらの知見は,プライバシ保存型多変量キャリブレーションの作成におけるEDPLSの実用性と,プライバシ・ユーティリティ・トレードオフの分析に有用であることを示す。
関連論文リスト
- Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
ユーザレベルの差分プライベート凸最適化(DP-SCO)は、マシンラーニングアプリケーションにおけるユーザのプライバシ保護の重要性から、大きな注目を集めている。
微分プライベート勾配勾配(DP-SGD)に基づくような現在の手法は、しばしば高雑音蓄積と準最適利用に苦しむ。
これらの課題を克服するために、ロバストな統計、特に中央値とトリミング平均を利用する新しい線形時間アルゴリズムを導入する。
論文 参考訳(メタデータ) (2025-02-13T02:05:45Z) - Calibrating Practical Privacy Risks for Differentially Private Machine Learning [5.363664265121231]
モデルトレーニングにおいて、より柔軟なプライバシ予算設定を可能にするために、攻撃の成功率を下げるアプローチについて検討する。
プライバシに敏感な機能を選択的に抑制することで、アプリケーション固有のデータユーティリティを損なうことなく、低いASR値を達成できることがわかりました。
論文 参考訳(メタデータ) (2024-10-30T03:52:01Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Adaptive Differential Privacy in Federated Learning: A Priority-Based
Approach [0.0]
フェデレートラーニング(FL)は、ローカルデータセットに直接アクセスせずにグローバルモデルを開発する。
DPはパラメータに一定のノイズを加えることで、プライバシーを保証するフレームワークを提供する。
本稿では,特徴量の相対的重要度に基づいて入射雑音の値を決定するFLの適応雑音付加法を提案する。
論文 参考訳(メタデータ) (2024-01-04T03:01:15Z) - Stronger Privacy Amplification by Shuffling for R\'enyi and Approximate
Differential Privacy [43.33288245778629]
このモデルにおける重要な結果は、ランダムにランダム化されたデータをランダムにシャッフルすると、差分プライバシー保証が増幅されることである。
このような増幅は、匿名でデータが提供されるシステムにおいて、はるかに強力なプライバシー保証を意味する。
本研究では,理論的にも数値的にも,アートプライバシの増幅状態を改善する。
論文 参考訳(メタデータ) (2022-08-09T08:13:48Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - A Differentially Private Framework for Deep Learning with Convexified
Loss Functions [4.059849656394191]
差分プライバシー(DP)は、基礎となるトレーニングセットのプライバシーを保護するためにディープラーニングに応用されている。
既存のDP実践は、客観的摂動、勾配摂動、出力摂動の3つのカテゴリに分類される。
本稿では,DPノイズをランダムにサンプリングしたニューロンに注入し,新しい出力摂動機構を提案する。
論文 参考訳(メタデータ) (2022-04-03T11:10:05Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
差分プライベートモデルは、モデルが多数のトレーニング可能なパラメータを含む場合、ユーティリティを劇的に劣化させる。
偏微分プライベート深層モデルの精度向上のためのアルゴリズムemphGradient Embedding Perturbation (GEP)を提案する。
論文 参考訳(メタデータ) (2021-02-25T04:29:58Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。