Representation learning of rare temporal conditions for travel time
prediction
- URL: http://arxiv.org/abs/2208.04667v1
- Date: Tue, 9 Aug 2022 11:21:10 GMT
- Title: Representation learning of rare temporal conditions for travel time
prediction
- Authors: Niklas Petersen, Filipe Rodrigues, Francisco Pereira
- Abstract summary: We present a vector-space model for encoding rare temporal conditions, that allows coherent representation learning across different temporal conditions.
We show increased performance for travel time prediction over different baselines when utilizing the vector-space encoding for representing the temporal setting.
- Score: 9.245862463309598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting travel time under rare temporal conditions (e.g., public holidays,
school vacation period, etc.) constitutes a challenge due to the limitation of
historical data. If at all available, historical data often form a
heterogeneous time series due to high probability of other changes over long
periods of time (e.g., road works, introduced traffic calming initiatives,
etc.). This is especially prominent in cities and suburban areas. We present a
vector-space model for encoding rare temporal conditions, that allows coherent
representation learning across different temporal conditions. We show increased
performance for travel time prediction over different baselines when utilizing
the vector-space encoding for representing the temporal setting.
Related papers
- Extralonger: Toward a Unified Perspective of Spatial-Temporal Factors for Extra-Long-Term Traffic Forecasting [69.4265346261936]
We introduce Extralonger, which unifies temporal and spatial factors.
It notably extends the prediction horizon to a week on real-world benchmarks.
It sets new standards in long-term and extra-long-term scenarios.
arXiv Detail & Related papers (2024-10-30T04:28:20Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Time Weaver: A Conditional Time Series Generation Model [13.273004650019827]
Time series are often enriched with paired heterogeneous contextual metadata.
Time Weaver is a novel diffusion-based model that leverages the heterogeneous metadata.
We show that Time Weaver outperforms state-of-the-art benchmarks on real-world energy, medical, air quality, and traffic data sets.
arXiv Detail & Related papers (2024-03-05T06:10:22Z) - REPLAY: Modeling Time-Varying Temporal Regularities of Human Mobility for Location Prediction over Sparse Trajectories [7.493786214342181]
We propose REPLAY, a general RNN architecture learning to capture the time-varying temporal regularities for location prediction.
Specifically, REPLAY not only resorts to distances in sparse trajectories to search for the informative hidden past states, but also accommodates the time-varying temporal regularities.
Results show that REPLAY consistently and significantly outperforms state-of-the-art methods by 7.7%-10.9% in the location prediction task.
arXiv Detail & Related papers (2024-02-26T05:28:36Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Contrastive Difference Predictive Coding [79.74052624853303]
We introduce a temporal difference version of contrastive predictive coding that stitches together pieces of different time series data to decrease the amount of data required to learn predictions of future events.
We apply this representation learning method to derive an off-policy algorithm for goal-conditioned RL.
arXiv Detail & Related papers (2023-10-31T03:16:32Z) - Instructed Diffuser with Temporal Condition Guidance for Offline
Reinforcement Learning [71.24316734338501]
We propose an effective temporally-conditional diffusion model coined Temporally-Composable diffuser (TCD)
TCD extracts temporal information from interaction sequences and explicitly guides generation with temporal conditions.
Our method reaches or matches the best performance compared with prior SOTA baselines.
arXiv Detail & Related papers (2023-06-08T02:12:26Z) - Encoding Time-Series Explanations through Self-Supervised Model Behavior
Consistency [26.99599329431296]
We present TimeX, a time series consistency model for training explainers.
TimeX trains an interpretable surrogate to mimic the behavior of a pretrained time series model.
We evaluate TimeX on eight synthetic and real-world datasets and compare its performance against state-of-the-art interpretability methods.
arXiv Detail & Related papers (2023-06-03T13:25:26Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series
Forecasting [10.605719154114354]
Time series models aim for accurate predictions of the future given the past, where the forecasts are used for important downstream tasks like business decision making.
In this paper, we introduce a novel autoregressive architecture, VQ-AR, which instead learns a emphdiscrete set of representations that are used to predict the future.
arXiv Detail & Related papers (2022-05-31T15:43:46Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
Traffic series forecasting is challenging due to complex time series patterns for the same time series patterns may vary across time, where, for example, there exist periods across a day showing stronger temporal correlations.
Such-temporal models employ a shared parameter space irrespective of the time locations and the time periods and they assume that the temporal correlations are similar across locations and do not always hold across time which may not always be the case.
We propose a framework that aims at turning ICD-temporal aware models to encode sub-temporal models.
arXiv Detail & Related papers (2022-03-29T16:44:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.