論文の概要: AI Approaches in Processing and Using Data in Personalized Medicine
- arxiv url: http://arxiv.org/abs/2208.04698v1
- Date: Tue, 26 Jul 2022 11:11:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-14 18:18:06.948313
- Title: AI Approaches in Processing and Using Data in Personalized Medicine
- Title(参考訳): パーソナライズドメディカルにおけるデータ処理と利用におけるAIアプローチ
- Authors: Mirjana Ivanovic (1), Serge Autexier (2) and Miltiadis Kokkonidis (3)
((1) University of Novi Sad, Faculty of Sciences, Novi Sad, Serbia, (2)
German Research Center for Artificial Intelligence (DFKI), Bremen Site,
Germany, (3) Netcompany-Intrasoft S.A., Luxembourg, Luxembourg)
- Abstract要約: 高度な人工知能技術は、そのようなビッグデータを分析し、それらを消費し、パーソナライズされた医療決定をサポートするための新しい知識を導き出す機会を提供する。
高度な機械学習、フェデレートドラーニング、トランスファーラーニング、説明可能な人工知能といった新しいアプローチは、将来的に健康データや医療データをより高品質に活用するための新たな道を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern dynamic constantly developing society, more and more people suffer
from chronic and serious diseases and doctors and patients need special and
sophisticated medical and health support. Accordingly, prominent health
stakeholders have recognized the importance of development of such services to
make patients life easier. Such support requires the collection of huge amount
of patients complex data like clinical, environmental, nutritional, daily
activities, variety of data from smart wearable devices, data from clothing
equipped with sensors etc. Holistic patients data must be properly aggregated,
processed, analyzed, and presented to the doctors and caregivers to recommend
adequate treatment and actions to improve patients health related parameters
and general wellbeing. Advanced artificial intelligence techniques offer the
opportunity to analyze such big data, consume them, and derive new knowledge to
support personalized medical decisions. New approaches like those based on
advanced machine learning, federated learning, transfer learning, explainable
artificial intelligence open new paths for more quality use of health and
medical data in future. In this paper, we will present some crucial aspects and
characteristic examples in the area of application of a range of artificial
intelligence approaches in personalized medical decisions.
- Abstract(参考訳): 現代の動的発展社会では、慢性・重篤な疾患に悩まされる人がますます多くなり、医師や患者は特別かつ洗練された医療・健康支援を必要としている。
そのため、医療関係者は患者の生活を楽にするためのサービスの開発の重要性を認識している。
このようなサポートには、臨床、環境、栄養、日々の活動、スマートウェアラブルデバイスのさまざまなデータ、センサーを備えた衣服のデータなど、膨大な量の患者データを集める必要がある。
患者データを適切に集計、処理、分析し、医師や介護者に提示し、患者の健康関連パラメータや一般的な健康状態を改善するための適切な治療とアクションを推奨する必要がある。
高度な人工知能技術は、そのようなビッグデータを分析し、それらを消費し、パーソナライズされた医療決定をサポートするための新しい知識を導き出す機会を提供する。
高度な機械学習、連合学習、転送学習、説明可能な人工知能に基づく新しいアプローチは、将来、健康と医療データのより高品質な利用のために新しい道を開く。
本稿では、パーソナライズされた医療決定における人工知能アプローチの適用領域において、いくつかの重要な側面と特徴例を示す。
関連論文リスト
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Rapid Review of Generative AI in Smart Medical Applications [3.068678059223457]
生成モデルは、重要なAI技術であり、医療画像生成、データ分析、診断に革命をもたらした。
本稿では、インテリジェント医療機器への応用について検討する。
生成モデルは、医療画像生成、データ分析、診断において非常に有望である。
論文 参考訳(メタデータ) (2024-06-08T03:34:47Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
本稿では、医用画像における生成AIの変換可能性について考察し、合成ACM-2データを生成する能力を強調した。
データセットのサイズと多様性の制限に対処することにより、これらのモデルはより正確な診断と患者の結果の改善に寄与する。
論文 参考訳(メタデータ) (2024-03-26T09:55:49Z) - Yes, this is what I was looking for! Towards Multi-modal Medical
Consultation Concern Summary Generation [46.42604861624895]
マルチモーダル・メディカル・コンシューム・サマリ・ジェネレーションの新しい課題を提案する。
患者のジェスチャーや表情などの非言語的手がかりは、患者の懸念を正確に識別するのに役立つ。
マルチモーダル・メディカル・コンシューム・サマリー・ジェネレーション・コーパスを構築。
論文 参考訳(メタデータ) (2024-01-10T12:56:47Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
医療用語を患者に親しみやすい平易な言語に簡略化することを目的とした,レイ定義の自動生成という新たなタスクを導入する。
このデータセットは、5万以上のユニークな(医療用語、日常の定義)ペアと30万の言及からなる。
また、データフィルタリング、拡張、選択を相乗化してデータ品質を改善する、データ中心のHuman-AIパイプラインも開発しました。
論文 参考訳(メタデータ) (2023-12-24T23:01:00Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - MD-Manifold: A Medical-Distance-Based Representation Learning Approach
for Medical Concept and Patient Representation [6.795388490479779]
医療分析タスクのための医療概念を表現するには、医療領域の知識と事前のデータ情報を統合する必要がある。
MD-Manifoldは,医療概念と患者表現に対する新しいアプローチを提案する。
これには、重要な医療領域の知識と事前のデータ情報を統合するための、新しいデータ拡張アプローチ、コンセプト距離メトリック、および患者と患者のネットワークが含まれる。
論文 参考訳(メタデータ) (2023-04-30T18:58:32Z) - Medical Pathologies Prediction : Systematic Review and Proposed Approach [0.0]
我々は、医療改善のためのビッグデータ、人工知能、機械学習、ディープラーニングなど、最新の技術の活用に関するさまざまな研究を分析し、検討した。
本稿では,医療データの収集,前処理,クラスタリングに着目した一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-01T13:35:17Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。