Improving COVID-19 CT Classification of CNNs by Learning
Parameter-Efficient Representation
- URL: http://arxiv.org/abs/2208.04718v1
- Date: Tue, 9 Aug 2022 12:24:53 GMT
- Title: Improving COVID-19 CT Classification of CNNs by Learning
Parameter-Efficient Representation
- Authors: Yujia Xu, Hak-Keung Lam, Guangyu Jia, Jian Jiang, Junkai Liao, Xinqi
Bao
- Abstract summary: Deep learning methods have been proposed to assist clinicians in automatic COVID-19 diagnosis based on computed tomography imaging.
DenseNet121 achieves an average test accuracy of 99.44% in three trials for three-category classification, including normal, non-COVID-19 pneumonia, and COVID-19 pneumonia.
- Score: 31.51725965329019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COVID-19 pandemic continues to spread rapidly over the world and causes a
tremendous crisis in global human health and the economy. Its early detection
and diagnosis are crucial for controlling the further spread. Many deep
learning-based methods have been proposed to assist clinicians in automatic
COVID-19 diagnosis based on computed tomography imaging. However, challenges
still remain, including low data diversity in existing datasets, and
unsatisfied detection resulting from insufficient accuracy and sensitivity of
deep learning models. To enhance the data diversity, we design augmentation
techniques of incremental levels and apply them to the largest open-access
benchmark dataset, COVIDx CT-2A. Meanwhile, similarity regularization (SR)
derived from contrastive learning is proposed in this study to enable CNNs to
learn more parameter-efficient representations, thus improving the accuracy and
sensitivity of CNNs. The results on seven commonly used CNNs demonstrate that
CNN performance can be improved stably through applying the designed
augmentation and SR techniques. In particular, DenseNet121 with SR achieves an
average test accuracy of 99.44% in three trials for three-category
classification, including normal, non-COVID-19 pneumonia, and COVID-19
pneumonia. And the achieved precision, sensitivity, and specificity for the
COVID-19 pneumonia category are 98.40%, 99.59%, and 99.50%, respectively. These
statistics suggest that our method has surpassed the existing state-of-the-art
methods on the COVIDx CT-2A dataset.
Related papers
- CIRCA: comprehensible online system in support of chest X-rays-based
COVID-19 diagnosis [37.41181188499616]
Deep learning techniques can help in the faster detection of COVID-19 cases and monitoring of disease progression.
Five different datasets were used to construct a representative dataset of 23 799 CXRs for model training.
A U-Net-based model was developed to identify a clinically relevant region of the CXR.
arXiv Detail & Related papers (2022-10-11T13:30:34Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
Recent research has shown radiography of COVID-19 patient contains salient information about the COVID-19 virus.
Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost and portability gains much attention.
In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for improved classification of COVID-19 from CXR images.
arXiv Detail & Related papers (2020-11-06T20:26:26Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
The main goal of this work is to propose an accurate yet efficient method for the problem of COVID-19 screening in chest X-rays.
A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches.
Results: The proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19, sensitivity of 96.8% and positive prediction of 100%.
arXiv Detail & Related papers (2020-04-12T23:26:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - Coronavirus (COVID-19) Classification using Deep Features Fusion and
Ranking Technique [0.0]
A novel method was proposed as fusing and ranking deep features to detect COVID-19 in early phase.
The proposed method shows high performance on Subset-2 with 98.27% accuracy, 98.93% sensitivity, 97.60% specificity, 97.63% precision, 98.28% F1-score and 96.54% Matthews Correlation Coefficient (MCC) metrics.
arXiv Detail & Related papers (2020-04-07T20:43:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.