Informationally complete measures of quantum entanglement
- URL: http://arxiv.org/abs/2206.11336v1
- Date: Wed, 22 Jun 2022 19:27:07 GMT
- Title: Informationally complete measures of quantum entanglement
- Authors: Zhi-Xiang Jin, Shao-Ming Fei, Xianqing Li-Jost, Cong-Feng Qiao
- Abstract summary: We introduce a family of entanglement measures which are given by the complete eigenvalues of the reduced density matrices of the system.
It is demonstrated that such ICEMs can characterize finer and distinguish better the entanglement than existing well-known entanglement measures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although quantum entanglement has already been verified experimentally and
applied in quantum computing, quantum sensing and quantum networks, most of the
existing measures cannot characterize the entanglement faithfully. In this
work, by exploiting the Schmidt decomposition of a bipartite state
$|\psi\rangle_{AB}$, we first establish a one-to-one correspondence relation
between the characteristic polynomial of the reduced state $\rho_A$ and the
polynomials its trace. Then we introduce a family of entanglement measures
which are given by the complete eigenvalues of the reduced density matrices of
the system. Specific measures called informationally complete entanglement
measures (ICEMs) are presented to illustrate the advantages. It is demonstrated
that such ICEMs can characterize finer and distinguish better the entanglement
than existing well-known entanglement measures. They also give rise to criteria
of state transformations under local operation and classical communication.
Moreover, we show that the ICEMs can be efficiently estimated on a quantum
computer. The fully separability, entanglement and genuine multipartite
entanglement can detected faithfully on quantum devices.
Related papers
- Entanglement measurement based on convex hull properties [0.0]
We will propose a scheme for measuring quantum entanglement, which starts with treating the set of quantum separable states as a convex hull of quantum separable pure states.
Although a large amount of data is required in the measurement process, this method is not only applicable to 2-qubit quantum states, but also a entanglement measurement method that can be applied to any dimension and any fragment.
arXiv Detail & Related papers (2024-11-08T08:03:35Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Locally purified density operators for noisy quantum circuits [17.38734393793605]
We show that mixed states generated from noisy quantum circuits can be efficiently represented by locally purified density operators (LPDOs)
We present a mapping from LPDOs of $N$ qubits to projected entangled-pair states of size $2times N$ and introduce a unified method for managing virtual and Kraus bonds.
arXiv Detail & Related papers (2023-12-05T16:10:30Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Sensitivity of entanglement measures in bipartite pure quantum states [0.0]
Entanglement measures quantify the amount of quantum entanglement that is contained in quantum states.
We have investigated the partial order between the normalized versions of four entanglement measures based on Schmidt decomposition of bipartite pure quantum states.
arXiv Detail & Related papers (2022-06-27T10:46:29Z) - Entanglement and Quantum Correlation Measures from a Minimum Distance
Principle [0.0]
Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science.
We derive an explicit measure able to quantify the degree of quantum correlation for pure or mixed multipartite states.
We prove that our entanglement measure is textitfaithful in the sense that it vanishes only on the set of separable states.
arXiv Detail & Related papers (2022-05-14T22:18:48Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.