A physically-informed Deep-Learning approach for locating sources in a
waveguide
- URL: http://arxiv.org/abs/2208.04938v1
- Date: Sun, 7 Aug 2022 19:54:10 GMT
- Title: A physically-informed Deep-Learning approach for locating sources in a
waveguide
- Authors: Adar Kahana, Symeon Papadimitropoulos, Eli Turkel, Dmitry Batenkov
- Abstract summary: Inverse source problems are central to many applications in acoustics, geophysics, non-destructive testing, and more.
Traditional imaging methods suffer from the resolution limit, preventing distinction of sources separated by less than the emitted wavelength.
We propose a method based on physically-informed neural-networks for solving the source refocusing problem.
- Score: 0.688204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse source problems are central to many applications in acoustics,
geophysics, non-destructive testing, and more. Traditional imaging methods
suffer from the resolution limit, preventing distinction of sources separated
by less than the emitted wavelength. In this work we propose a method based on
physically-informed neural-networks for solving the source refocusing problem,
constructing a novel loss term which promotes super-resolving capabilities of
the network and is based on the physics of wave propagation. We demonstrate the
approach in the setup of imaging an a-priori unknown number of point sources in
a two-dimensional rectangular waveguide from measurements of wavefield
recordings along a vertical cross-section. The results show the ability of the
method to approximate the locations of sources with high accuracy, even when
placed close to each other.
Related papers
- NeISF: Neural Incident Stokes Field for Geometry and Material Estimation [50.588983686271284]
Multi-view inverse rendering is the problem of estimating the scene parameters such as shapes, materials, or illuminations from a sequence of images captured under different viewpoints.
We propose Neural Incident Stokes Fields (NeISF), a multi-view inverse framework that reduces ambiguities using polarization cues.
arXiv Detail & Related papers (2023-11-22T06:28:30Z) - An Unsupervised Deep Learning Approach for the Wave Equation Inverse
Problem [12.676629870617337]
Full-waveform inversion (FWI) is a powerful geophysical imaging technique that infers high-resolution subsurface physical parameters.
Due to limitations in observation, limited shots or receivers, and random noise, conventional inversion methods are confronted with numerous challenges.
We provide an unsupervised learning approach aimed at accurately reconstructing physical velocity parameters.
arXiv Detail & Related papers (2023-11-08T08:39:33Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
We propose a new method for separating superimposed sources using diffusion-based generative models.
Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature.
Our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme.
arXiv Detail & Related papers (2023-06-26T04:12:40Z) - Deep Learning and Image Super-Resolution-Guided Beam and Power
Allocation for mmWave Networks [80.37827344656048]
We develop a deep learning (DL)-guided hybrid beam and power allocation approach for millimeter-wave (mmWave) networks.
We exploit the synergy of supervised learning and super-resolution technology to enable low-overhead beam- and power allocation.
arXiv Detail & Related papers (2023-05-08T05:40:54Z) - Microseismic source imaging using physics-informed neural networks with
hard constraints [4.07926531936425]
We propose a direct microseismic imaging framework based on physics-informed neural networks (PINNs)
We use the PINNs to represent a multi-frequency wavefield and then apply inverse Fourier transform to extract the source image.
We further apply our method to hydraulic fracturing monitoring field data, and demonstrate that our method can correctly image the source with fewer artifacts.
arXiv Detail & Related papers (2023-04-09T21:10:39Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
We study the single-channel source separation problem involving frequency-division multiplexing (OFDM) signals.
We propose critical domain-informed modifications to the network parameterization, based on insights from OFDM structures.
arXiv Detail & Related papers (2023-03-11T16:29:13Z) - Reinforced Inverse Scattering [2.535271349350579]
Inverse wave scattering aims at determining the properties of an object using data on how the object scatters incoming waves.
The choice of sensor positions and incident wave frequencies determines the reconstruction quality of scatterer properties.
This paper introduces reinforcement learning to develop precision imaging that decides sensor positions and wave frequencies adaptive to different scatterers.
arXiv Detail & Related papers (2022-06-08T22:56:09Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
We propose an end-to-end trainable deep learning architecture for sparse signal recovery problems.
The proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase.
arXiv Detail & Related papers (2020-10-29T06:32:53Z) - Learning the geometry of wave-based imaging [24.531973107529584]
We build an interpretable neural architecture inspired by Fourier integral operators (FIOs) which approximate the wave physics.
We focus on learning the geometry of wave propagation captured by FIOs, which is implicit in the data, via a loss based on optimal transport.
The proposed FIONet performs significantly better than the usual baselines on a number of imaging inverse problems, especially in out-of-distribution tests.
arXiv Detail & Related papers (2020-06-10T14:29:54Z) - Class-Specific Blind Deconvolutional Phase Retrieval Under a Generative
Prior [8.712404218757733]
The problem arises in various imaging modalities such as Fourier ptychography, X-ray crystallography, and in visible light communication.
We propose to solve this inverse problem using alternating gradient descent algorithm under two pretrained deep generative networks as priors.
The proposed recovery algorithm strives to find a sharp image and a blur kernel in the range of the respective pre-generators that textitbest explain the forward measurement model.
arXiv Detail & Related papers (2020-02-28T07:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.