An Unsupervised Deep Learning Approach for the Wave Equation Inverse
Problem
- URL: http://arxiv.org/abs/2311.04531v1
- Date: Wed, 8 Nov 2023 08:39:33 GMT
- Title: An Unsupervised Deep Learning Approach for the Wave Equation Inverse
Problem
- Authors: Xiong-Bin Yan and Keke Wu and Zhi-Qin John Xu and Zheng Ma
- Abstract summary: Full-waveform inversion (FWI) is a powerful geophysical imaging technique that infers high-resolution subsurface physical parameters.
Due to limitations in observation, limited shots or receivers, and random noise, conventional inversion methods are confronted with numerous challenges.
We provide an unsupervised learning approach aimed at accurately reconstructing physical velocity parameters.
- Score: 12.676629870617337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-waveform inversion (FWI) is a powerful geophysical imaging technique
that infers high-resolution subsurface physical parameters by solving a
non-convex optimization problem. However, due to limitations in observation,
e.g., limited shots or receivers, and random noise, conventional inversion
methods are confronted with numerous challenges, such as the local-minimum
problem. In recent years, a substantial body of work has demonstrated that the
integration of deep neural networks and partial differential equations for
solving full-waveform inversion problems has shown promising performance. In
this work, drawing inspiration from the expressive capacity of neural networks,
we provide an unsupervised learning approach aimed at accurately reconstructing
subsurface physical velocity parameters. This method is founded on a
re-parametrization technique for Bayesian inference, achieved through a deep
neural network with random weights. Notably, our proposed approach does not
hinge upon the requirement of the labeled training dataset, rendering it
exceedingly versatile and adaptable to diverse subsurface models. Extensive
experiments show that the proposed approach performs noticeably better than
existing conventional inversion methods.
Related papers
- ODE-DPS: ODE-based Diffusion Posterior Sampling for Inverse Problems in Partial Differential Equation [1.8356973269166506]
We introduce a novel unsupervised inversion methodology tailored for solving inverse problems arising from PDEs.
Our approach operates within the Bayesian inversion framework, treating the task of solving the posterior distribution as a conditional generation process.
To enhance the accuracy of inversion results, we propose an ODE-based Diffusion inversion algorithm.
arXiv Detail & Related papers (2024-04-21T00:57:13Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - Implicit neural representation with physics-informed neural networks for
the reconstruction of the early part of room impulse responses [16.89505645696765]
We exploit physics-informed neural networks to reconstruct the early part of missing room impulse responses in a linear array.
The proposed model achieves accurate reconstruction and performance in line with respect to state-of-the-art deep-learning and compress sensing techniques.
arXiv Detail & Related papers (2023-06-20T13:01:00Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
Full waveform inversion produces high-resolution subsurface models.
FWI with least-squares function suffers from many drawbacks such as the local-minima problem.
Recent works relying on partial differential equations and neural networks show promising performance for two-dimensional FWI.
We propose an unsupervised learning paradigm that integrates wave equation with a discriminate network to accurately estimate the physically consistent models.
arXiv Detail & Related papers (2021-09-23T15:54:40Z) - The Neural Network shifted-Proper Orthogonal Decomposition: a Machine
Learning Approach for Non-linear Reduction of Hyperbolic Equations [0.0]
In this work we approach the problem of automatically detecting the correct pre-processing transformation in a statistical learning framework.
The purely data-driven method allowed us to generalise the existing approaches of linear subspace manipulation to non-linear hyperbolic problems with unknown advection fields.
The proposed algorithm has been validated against simple test cases to benchmark its performances and later successfully applied to a multiphase simulation.
arXiv Detail & Related papers (2021-08-14T15:13:35Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.