Natural Language Processing for Systems Engineering: Automatic
Generation of Systems Modelling Language Diagrams
- URL: http://arxiv.org/abs/2208.05008v1
- Date: Tue, 9 Aug 2022 19:20:33 GMT
- Title: Natural Language Processing for Systems Engineering: Automatic
Generation of Systems Modelling Language Diagrams
- Authors: Shaohong Zhong, Andrea Scarinci, Alice Cicirello
- Abstract summary: An approach is proposed to assist systems engineers in the automatic generation of systems diagrams from unstructured natural language text.
The intention is to provide the users with a more standardised, comprehensive and automated starting point onto which subsequently refine and adapt the diagrams according to their needs.
- Score: 0.10312968200748115
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The design of complex engineering systems is an often long and articulated
process that highly relies on engineers' expertise and professional judgment.
As such, the typical pitfalls of activities involving the human factor often
manifest themselves in terms of lack of completeness or exhaustiveness of the
analysis, inconsistencies across design choices or documentation, as well as an
implicit degree of subjectivity. An approach is proposed to assist systems
engineers in the automatic generation of systems diagrams from unstructured
natural language text. Natural Language Processing (NLP) techniques are used to
extract entities and their relationships from textual resources (e.g.,
specifications, manuals, technical reports, maintenance reports) available
within an organisation, and convert them into Systems Modelling Language
(SysML) diagrams, with particular focus on structure and requirement diagrams.
The intention is to provide the users with a more standardised, comprehensive
and automated starting point onto which subsequently refine and adapt the
diagrams according to their needs. The proposed approach is flexible and
open-domain. It consists of six steps which leverage open-access tools, and it
leads to an automatic generation of SysML diagrams without intermediate
modelling requirement, but through the specification of a set of parameters by
the user. The applicability and benefits of the proposed approach are shown
through six case studies having different textual sources as inputs, and
benchmarked against manually defined diagram elements.
Related papers
- Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - A quantitative framework for evaluating architectural patterns in ML systems [49.1574468325115]
This study proposes a framework for quantitative assessment of architectural patterns in ML systems.
We focus on scalability and performance metrics for cost-effective CPU-based inference.
arXiv Detail & Related papers (2025-01-20T15:30:09Z) - Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design [2.368662284133926]
Process Flow Diagrams (PFDs) and Process and Instrumentation Diagrams (PIDs) are critical tools for industrial process design, control, and safety.
The generation of precise and regulation-compliant diagrams remains a significant challenge, particularly in scaling breakthroughs from material discovery to industrial production in an era of automation and digitalization.
This paper introduces an autonomous agentic framework to address these challenges through a twostage approach involving knowledge acquisition and generation.
arXiv Detail & Related papers (2024-12-08T13:36:42Z) - MetaDesigner: Advancing Artistic Typography Through AI-Driven, User-Centric, and Multilingual WordArt Synthesis [65.78359025027457]
MetaDesigner introduces a transformative framework for artistic typography, powered by Large Language Models (LLMs)
Its foundation is a multi-agent system comprising the Pipeline, Glyph, and Texture agents, which collectively orchestrate the creation of customizable WordArt.
arXiv Detail & Related papers (2024-06-28T11:58:26Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We develop an automated text-to-poster system that generates editable posters based on users' design intentions.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications [11.568575664316143]
This paper provides a structured overview of recent advancements in prompt engineering, categorized by application area.
We provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized.
This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
arXiv Detail & Related papers (2024-02-05T19:49:13Z) - From Dialogue to Diagram: Task and Relationship Extraction from Natural
Language for Accelerated Business Process Prototyping [0.0]
This paper introduces a contemporary solution, where central to our approach, is the use of dependency parsing and Named Entity Recognition (NER)
We utilize Subject-Verb-Object (SVO) constructs for identifying action relationships and integrate semantic analysis tools, including WordNet, for enriched contextual understanding.
The system adeptly handles data transformation and visualization, converting verbose extracted information into BPMN (Business Process Model and Notation) diagrams.
arXiv Detail & Related papers (2023-12-16T12:35:28Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems [69.50862982117127]
An interdisciplinary graphical modeling language that enables the modeling of an AI application as an overall system comprehensible to all disciplines does not yet exist.
This paper presents a graphical modeling language that enables consistent and understandable modeling of AI applications in automation systems at system level.
arXiv Detail & Related papers (2023-06-20T12:06:41Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - Technical Report on Neural Language Models and Few-Shot Learning for
Systematic Requirements Processing in MDSE [1.6286277560322266]
This paper is based on the analysis of an open-source set of automotive requirements.
We derive domain-specific language constructs helping us to avoid ambiguities in requirements and increase the level of formality.
arXiv Detail & Related papers (2022-11-16T18:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.