論文の概要: A Detection Method of Temporally Operated Videos Using Robust Hashing
- arxiv url: http://arxiv.org/abs/2208.05198v2
- Date: Thu, 11 Aug 2022 14:42:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-12 11:09:53.258515
- Title: A Detection Method of Temporally Operated Videos Using Robust Hashing
- Title(参考訳): ロバストハッシュを用いた時間操作映像の検出法
- Authors: Shoko Niwa, Miki Tanaka, Hitoshi Kiya
- Abstract要約: 従来のビデオや画像の改ざん検出方法は、そのような操作に対して十分に堅牢ではない。
そこで本研究では,ビデオに解像度と圧縮を適用した場合でも,時間的に操作されたビデオを検出する頑健なハッシュアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.27887776401573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: SNS providers are known to carry out the recompression and resizing of
uploaded videos/images, but most conventional methods for detecting tampered
videos/images are not robust enough against such operations. In addition,
videos are temporally operated such as the insertion of new frames and the
permutation of frames, of which operations are difficult to be detected by
using conventional methods. Accordingly, in this paper, we propose a novel
method with a robust hashing algorithm for detecting temporally operated videos
even when applying resizing and compression to the videos.
- Abstract(参考訳): SNSプロバイダは、アップロードされたビデオ/画像の再圧縮と再サイズを行うことが知られているが、従来のビデオ/画像の検出方法は、そのような操作に対して十分に堅牢ではない。
また,新しいフレームの挿入やフレームの置換など,従来の方法では検出が困難であった映像を時間的に操作する。
そこで本研究では,ビデオに縮小圧縮を適用した場合でも,時間的に操作されたビデオを検出する頑健なハッシュアルゴリズムを提案する。
関連論文リスト
- Digital Video Manipulation Detection Technique Based on Compression Algorithms [8.345872075633498]
本稿では,H.264符号化における圧縮アルゴリズムの解析による法医学的手法を提案する。
Vector Support Machineは、ビデオが圧縮されたかどうかを正確に検出するモデルを作成するために使用される。
論文 参考訳(メタデータ) (2024-02-03T16:05:27Z) - Accelerated Event-Based Feature Detection and Compression for
Surveillance Video Systems [1.5390526524075634]
スパース圧縮表現において時間的冗長性を伝達する新しいシステムを提案する。
我々はADDERと呼ばれるビデオ表現フレームワークを利用して、フレーム化されたビデオを疎結合で非同期な強度サンプルに変換する。
我々の研究は、今後のニューロモルフィックセンサーの道を切り拓き、スパイクニューラルネットワークによる将来の応用に有効である。
論文 参考訳(メタデータ) (2023-12-13T15:30:29Z) - Blurry Video Compression: A Trade-off between Visual Enhancement and
Data Compression [65.8148169700705]
既存のビデオ圧縮(VC)手法は主に、ビデオ内の連続フレーム間の空間的および時間的冗長性を減らすことを目的としている。
これまでの研究は、インスタント(既知の)露光時間やシャッタースピードなどの特定の設定で取得されたビデオに対して、顕著な成果を上げてきた。
本研究では,シーン内のカメラ設定やダイナミックスによって,所定の映像がぼやけてしまうという一般的なシナリオにおいて,VCの問題に取り組む。
論文 参考訳(メタデータ) (2023-11-08T02:17:54Z) - Aggregating Long-term Sharp Features via Hybrid Transformers for Video
Deblurring [76.54162653678871]
本稿では,特徴集約のためのハイブリッドトランスフォーマーを用いて,隣接するフレームとシャープフレームの両方を活用するビデオデブロアリング手法を提案する。
提案手法は,定量的な計測値と視覚的品質の観点から,最先端のビデオデブロアリング法,およびイベント駆動ビデオデブロアリング法より優れる。
論文 参考訳(メタデータ) (2023-09-13T16:12:11Z) - Speeding Up Action Recognition Using Dynamic Accumulation of Residuals
in Compressed Domain [2.062593640149623]
ビデオ処理アルゴリズムに関して、時間的冗長性と生ビデオの重大性は、最も一般的な2つの問題である。
本稿では,光部分復号処理によって得られる圧縮ビデオで直接利用できる残差データの利用法を提案する。
圧縮された領域に蓄積された残留物にのみニューラルネットワークを適用することで、性能が向上する一方、分類結果は生のビデオアプローチと非常に競合する。
論文 参考訳(メタデータ) (2022-09-29T13:08:49Z) - GPU-accelerated SIFT-aided source identification of stabilized videos [63.084540168532065]
我々は、安定化フレームインバージョンフレームワークにおけるグラフィクス処理ユニット(GPU)の並列化機能を利用する。
我々はSIFT機能を活用することを提案する。
カメラのモーメントを推定し 1%の確率で 時間セグメントを識別します
実験により,提案手法の有効性を確認し,必要な計算時間を短縮し,情報源の同定精度を向上させる。
論文 参考訳(メタデータ) (2022-07-29T07:01:31Z) - Temporal Early Exits for Efficient Video Object Detection [1.1470070927586016]
本稿では,フレーム単位の動画オブジェクト検出の計算複雑性を低減するため,時間的早期出口を提案する。
提案手法は,既存の手法と比較して,フレーム単位の動画オブジェクト検出の計算複雑性と実行を最大34倍に削減する。
論文 参考訳(メタデータ) (2021-06-21T15:49:46Z) - Semi-Supervised Action Recognition with Temporal Contrastive Learning [50.08957096801457]
2つの異なる速度でラベル付きビデオを用いて2経路の時間的コントラストモデルを学習する。
我々は最先端の半教師付き画像認識手法の映像拡張性能を著しく向上させた。
論文 参考訳(メタデータ) (2021-02-04T17:28:35Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Robust and efficient post-processing for video object detection [9.669942356088377]
この研究は、従来の後処理メソッドの制限を克服する、新しい後処理パイプラインを導入している。
本手法は,特に高速移動物体に関する最先端の映像検出器の結果を改善する。
そして、YOLOのような効率的な静止画像検出器に適用することで、より計算集約的な検出器に匹敵する結果が得られる。
論文 参考訳(メタデータ) (2020-09-23T10:47:24Z) - A Modified Fourier-Mellin Approach for Source Device Identification on
Stabilized Videos [72.40789387139063]
マルチメディアの法医学ツールは通常 取得したフレームに カメラセンサーが残した 特徴的なノイズの痕跡を利用する
この分析では,カメラを特徴付けるノイズパターンと,解析対象の映像フレームから抽出したノイズパターンを幾何学的に整列させる必要がある。
本稿では,周波数領域におけるスケーリングと回転パラメータの探索により,この制限を克服することを提案する。
論文 参考訳(メタデータ) (2020-05-20T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。