Top Gear or Black Mirror: Inferring Political Leaning From Non-Political
Content
- URL: http://arxiv.org/abs/2208.05662v1
- Date: Thu, 11 Aug 2022 06:41:23 GMT
- Title: Top Gear or Black Mirror: Inferring Political Leaning From Non-Political
Content
- Authors: Ahmet Kurnaz and Scott A. Hale
- Abstract summary: Polarization and echo chambers are often studied in the context of explicitly political events such as elections.
Political polarization in non-political contexts is often unknown.
Political leaning is known to correlate with many lifestyle choices leading to stereotypes such as the "latte-drinking liberal"
- Score: 8.435739379764408
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Polarization and echo chambers are often studied in the context of explicitly
political events such as elections, and little scholarship has examined the
mixing of political groups in non-political contexts. A major obstacle to
studying political polarization in non-political contexts is that political
leaning (i.e., left vs right orientation) is often unknown. Nonetheless,
political leaning is known to correlate (sometimes quite strongly) with many
lifestyle choices leading to stereotypes such as the "latte-drinking liberal."
We develop a machine learning classifier to infer political leaning from
non-political text and, optionally, the accounts a user follows on social
media. We use Voter Advice Application results shared on Twitter as our
groundtruth and train and test our classifier on a Twitter dataset comprising
the 3,200 most recent tweets of each user after removing any tweets with
political text. We correctly classify the political leaning of most users (F1
scores range from 0.70 to 0.85 depending on coverage). We find no relationship
between the level of political activity and our classification results. We
apply our classifier to a case study of news sharing in the UK and discover
that, in general, the sharing of political news exhibits a distinctive
left-right divide while sports news does not.
Related papers
- Generalizing Political Leaning Inference to Multi-Party Systems:
Insights from the UK Political Landscape [10.798766768721741]
An ability to infer the political leaning of social media users can help in gathering opinion polls.
We release a dataset comprising users labelled by their political leaning as well as interactions with one another.
We show that interactions in the form of retweets between users can be a very powerful feature to enable political leaning inference.
arXiv Detail & Related papers (2023-12-04T09:02:17Z) - Does Twitter know your political views? POLiTweets dataset and
semi-automatic method for political leaning discovery [0.0]
POLiTweets is the first publicly open Polish dataset for political affiliation discovery in a multiparty setup.
It consists of over 147k tweets from almost 10k Polish-writing users annotatedally and almost 40k tweets from 166 users annotated manually as a test set.
We used our data to study the aspects of domain shift in the context of topics and the type of content writers - ordinary citizens vs. professional politicians.
arXiv Detail & Related papers (2022-06-14T10:28:23Z) - Tweets2Stance: Users stance detection exploiting Zero-Shot Learning
Algorithms on Tweets [0.06372261626436675]
The aim of the study is to predict the stance of a Party p in regard to each statement s exploiting what the Twitter Party account wrote on Twitter.
Results obtained from multiple experiments show that Tweets2Stance can correctly predict the stance with a general minimum MAE of 1.13, which is a great achievement considering the task complexity.
arXiv Detail & Related papers (2022-04-22T14:00:11Z) - Millions of Co-purchases and Reviews Reveal the Spread of Polarization
and Lifestyle Politics across Online Markets [68.8204255655161]
We study the pervasiveness of polarization and lifestyle politics over different product segments in a diverse market.
We sample 234.6 million relations among 21.8 million market entities to find product categories that are politically relevant, aligned, and polarized.
Cultural products are 4 times more polarized than any other segment.
arXiv Detail & Related papers (2022-01-17T18:16:37Z) - Demographic Confounding Causes Extreme Instances of Lifestyle Politics
on Facebook [73.37786708074361]
We find that the most extreme instances of lifestyle politics are those which are highly confounded by demographics such as race/ethnicity.
The most liberal interests included electric cars, Planned Parenthood, and liberal satire while the most conservative interests included the Republican Party and conservative commentators.
arXiv Detail & Related papers (2022-01-17T16:48:00Z) - Shifting Polarization and Twitter News Influencers between two U.S.
Presidential Elections [92.33485580547801]
We analyze the change of polarization between the 2016 and 2020 U.S. presidential elections.
Most of the top influencers were affiliated with media organizations during both elections.
75% of the top influencers in 2020 were not present in 2016, demonstrating that such status is difficult to retain.
arXiv Detail & Related papers (2021-11-03T20:08:54Z) - A Machine Learning Pipeline to Examine Political Bias with Congressional
Speeches [0.3062386594262859]
We give machine learning approaches to study political bias in two ideologically diverse social media forums: Gab and Twitter.
Our proposed methods exploit the use of transcripts collected from political speeches in US congress to label the data.
We also present a machine learning approach that combines features from cascades and text to forecast cascade's political bias with an accuracy of about 85%.
arXiv Detail & Related papers (2021-09-18T21:15:21Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
A way of reducing polarization would be by distributing cross-partisan news among individuals with distinct political orientations.
This study investigates whether this holds in the context of nationwide elections in Brazil and Canada.
arXiv Detail & Related papers (2021-09-18T11:34:04Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Political Posters Identification with Appearance-Text Fusion [49.55696202606098]
We propose a method that efficiently utilizes appearance features and text vectors to accurately classify political posters.
The majority of this work focuses on political posters that are designed to serve as a promotion of a certain political event.
arXiv Detail & Related papers (2020-12-19T16:14:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.