Solving partial differential equations on near-term quantum computers
- URL: http://arxiv.org/abs/2208.05805v1
- Date: Thu, 11 Aug 2022 13:07:55 GMT
- Title: Solving partial differential equations on near-term quantum computers
- Authors: Anton Simen Albino, Lucas Correia Jardim, Diego Campos Knupp, Antonio
Jose Silva Neto, Otto Menegasso Pires, Erick Giovani Sperandio Nascimento
- Abstract summary: We obtain the numerical temperature field to a thermally developing fluid flow inside parallel plates problem with a quantum computing method.
The work advances the state of the art of solutions of differential equations with noisy quantum devices and could be used for useful applications when quantum computers with thousands of qubits become available.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we obtain the numerical temperature field to a thermally
developing fluid flow inside parallel plates problem with a quantum computing
method. The physical problem deals with the heat transfer of a steady state,
hydrodinamically developed and thermally developing fluid flow inside two
parallel plates channel subjected to a prescribed constant heat flux. Its
solution is formulated numerically with Finite Differences method, where a
sequence of linear systems must be solved in order to determine the complete
temperature field. Such linear systems are written as discrete unconstrained
optimization problems with floating points being approximated using binary
variables and solved using near-term quantum heuristics. Due to the exponential
cost of simulating quantum algorithms, a reduced number of qubits had to be
used in the simulations, causing a loss of precision in the results. However,
this work advances the state of the art of solutions of differential equations
with noisy quantum devices and could be used for useful applications when
quantum computers with thousands of qubits become available.
Related papers
- Depth analysis of variational quantum algorithms for heat equation [0.0]
We consider three approaches to solve the heat equation on a quantum computer.
An exponential number of Pauli products in the Hamiltonian decomposition does not allow for the quantum speed up to be achieved.
The ansatz tree approach exploits an explicit form of the matrix what makes it possible to achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2022-12-23T14:46:33Z) - Variational Quantum Solutions to the Advection-Diffusion Equation for
Applications in Fluid Dynamics [0.0]
We present one method to perform fluid dynamics calculations that takes advantage of quantum computing.
We find that reliable solutions of the equation can be obtained on even the noisy quantum computers available today.
arXiv Detail & Related papers (2022-08-24T21:29:46Z) - Application of a variational hybrid quantum-classical algorithm to heat
conduction equation [8.886131782376246]
This work applies a variational hybrid quantum-classical algorithm, namely the variational quantum linear solver (VQLS) to resolve the heat conduction equation.
Details of VQLS implementation are discussed by various test instances of linear systems.
The time complexity of the present approach is logarithmically dependent on precision epsilon and linearly dependent on the number of qubits n.
arXiv Detail & Related papers (2022-07-29T12:20:09Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - A hybrid classical-quantum approach to solve the heat equation using
quantum annealers [0.0]
We show that the errors and chain break fraction are, on average, greater on the 2000Q system.
Unlike the classical Gauss-Seidel method, the errors of the quantum solutions level off after a few iterations.
This is partly a result of the span of the real number line available from the mapping of the chosen size of the set of qubit states.
arXiv Detail & Related papers (2021-06-08T13:04:34Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum Algorithms for Solving Ordinary Differential Equations via
Classical Integration Methods [1.802439717192088]
We explore utilizing quantum computers for the purpose of solving differential equations.
We devise and simulate corresponding digital quantum circuits, and implement and run a 6$mathrmth$ order Gauss-Legendre collocation method.
As promising future scenario, the digital arithmetic method could be employed as an "oracle" within quantum search algorithms for inverse problems.
arXiv Detail & Related papers (2020-12-17T09:49:35Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.