論文の概要: Multi-Model Probabilistic Programming
- arxiv url: http://arxiv.org/abs/2208.06329v1
- Date: Fri, 12 Aug 2022 15:38:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-15 13:52:20.965569
- Title: Multi-Model Probabilistic Programming
- Title(参考訳): 多モデル確率型プログラミング
- Authors: Ryan Bernstein
- Abstract要約: 本稿では,各プログラムが関係する確率モデルのネットワークを表現できる確率計画の拡張について述べる。
本稿では,これらの多モデル確率型プログラムの形式的意味論,ネットワーク・オブ・モデル演算のための効率的なアルゴリズムの集合,および一般的な確率型言語であるStan上に構築されたサンプル実装について述べる。
このネットワーク・オブ・モデル表現は、モデル空間における検索と自動化、モデル開発の追跡とコミュニケーション、pハックのような問題を緩和する明示的なモデラー自由度を含む、多くの扉を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic programming makes it easy to represent a probabilistic model as
a program. Building an individual model, however, is only one step of
probabilistic modeling. The broader challenge of probabilistic modeling is in
understanding and navigating spaces of alternative models. There is currently
no good way to represent these spaces of alternative models, despite their
central role. We present an extension of probabilistic programming that lets
each program represent a network of interrelated probabilistic models. We give
a formal semantics for these multi-model probabilistic programs, a collection
of efficient algorithms for network-of-model operations, and an example
implementation built on top of the popular probabilistic programming language
Stan. This network-of-models representation opens many doors, including search
and automation in model-space, tracking and communication of model development,
and explicit modeler degrees of freedom to mitigate issues like p-hacking. We
demonstrate automatic model search and model development tracking using our
Stan implementation, and we propose many more possible applications.
- Abstract(参考訳): 確率的プログラミングは、プログラムとして確率的モデルを表現しやすくする。
しかし、個々のモデルを構築することは確率論的モデリングの一段階にすぎない。
確率的モデリングのより広い課題は、代替モデルの空間を理解し、ナビゲートすることである。
現在、それらの中心的な役割にもかかわらず、これらの代替モデルの空間を表現する良い方法がない。
本稿では,各プログラムが関連する確率モデルのネットワークを表現できる確率プログラミングの拡張を提案する。
我々は、これらの多モデル確率プログラムの形式的意味論、ネットワーク・オブ・モデル操作のための効率的なアルゴリズムの集合、そして人気のある確率的プログラミング言語 stan の上に構築された実装例を与える。
このネットワーク・オブ・モデル表現は、モデル空間における検索と自動化、モデル開発の追跡とコミュニケーション、pハックのような問題を緩和するための明確なモデリング自由度など、多くの扉を開く。
我々は,Stan実装を用いたモデル検索とモデル開発の自動追跡を実演し,さらに多くのアプリケーションを提案する。
関連論文リスト
- Automated Statistical Model Discovery with Language Models [34.03743547761152]
本稿では,言語モデルを用いた自動統計モデル探索手法を提案する。
Boxのループの原則的なフレームワーク内に,自動手順を投入しました。
その結果,LM駆動型モデル発見の可能性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-27T20:33:22Z) - Language Model Cascades [72.18809575261498]
テスト時に1つのモデルで繰り返し対話する、あるいは複数のモデルの合成は、さらに機能を拡張する。
制御フローと動的構造を持つ場合、確率的プログラミングのテクニックが必要となる。
この観点から、スクラッチパッド/思考連鎖、検証器、STaR、選択推論、ツール利用など、いくつかの既存のテクニックを定式化します。
論文 参考訳(メタデータ) (2022-07-21T07:35:18Z) - Stochastic Parameterizations: Better Modelling of Temporal Correlations
using Probabilistic Machine Learning [1.5293427903448025]
確率的フレームワーク内で物理インフォームされたリカレントニューラルネットワークを用いることで,96大気シミュレーションのモデルが競合することを示す。
これは、標準の1次自己回帰スキームと比較して時間的相関をモデル化する能力が優れているためである。
文献から多くの指標を評価するとともに、将来的な気候モデルにおいて、確率論的尺度が統一的な選択である可能性についても論じる。
論文 参考訳(メタデータ) (2022-03-28T14:51:42Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
この研究は、大規模構造化モデルの計算とメモリの複雑さを低減するための単純なアプローチを示す。
言語モデリング,ポリフォニック・ミュージック・モデリング,教師なし文法帰納法,ビデオ・モデリングのためのニューラルパラメータ構造モデルを用いた実験により,我々の手法は大規模状態空間における標準モデルの精度と一致することを示した。
論文 参考訳(メタデータ) (2022-01-08T00:47:50Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - flip-hoisting: Exploiting Repeated Parameters in Discrete Probabilistic
Programs [25.320181572646135]
本稿では、離散確率的プログラムにおいて繰り返しパラメータを分解し、推論性能を向上させるプログラム解析とそれに伴う最適化について述べる。
既存の確率型プログラミング言語でフリップホスティングを実装し,推論性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-10-19T22:04:26Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - How to Design Sample and Computationally Efficient VQA Models [53.65668097847456]
テキストを確率的プログラムとして表現し,イメージをオブジェクトレベルのシーングラフとして表現することが,これらのデシラタを最も満足していることが判明した。
既存のモデルを拡張して,これらのソフトプログラムとシーングラフを活用して,エンドツーエンドで質問応答ペアをトレーニングします。
論文 参考訳(メタデータ) (2021-03-22T01:48:16Z) - Transforming Probabilistic Programs for Model Checking [0.0]
確率的プログラムに静的解析を適用し、2つの重要なモデル検査手法の大部分を自動化する。
本手法は,密度関数を指定する確率的プログラムを,効率的なフォワードサンプリング形式に変換する。
本稿では,一般的なStan確率型プログラミング言語を対象とする実装を提案する。
論文 参考訳(メタデータ) (2020-08-21T21:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。