論文の概要: Stochastic Parameterizations: Better Modelling of Temporal Correlations
using Probabilistic Machine Learning
- arxiv url: http://arxiv.org/abs/2203.14814v1
- Date: Mon, 28 Mar 2022 14:51:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-29 21:01:59.025952
- Title: Stochastic Parameterizations: Better Modelling of Temporal Correlations
using Probabilistic Machine Learning
- Title(参考訳): 確率的パラメータ化:確率論的機械学習による時間相関のモデル化
- Authors: Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, Damon J.
Wischik
- Abstract要約: 確率的フレームワーク内で物理インフォームされたリカレントニューラルネットワークを用いることで,96大気シミュレーションのモデルが競合することを示す。
これは、標準の1次自己回帰スキームと比較して時間的相関をモデル化する能力が優れているためである。
文献から多くの指標を評価するとともに、将来的な気候モデルにおいて、確率論的尺度が統一的な選択である可能性についても論じる。
- 参考スコア(独自算出の注目度): 1.5293427903448025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The modelling of small-scale processes is a major source of error in climate
models, hindering the accuracy of low-cost models which must approximate such
processes through parameterization. Using stochasticity and machine learning
have led to better models but there is a lack of work on combining the benefits
from both. We show that by using a physically-informed recurrent neural network
within a probabilistic framework, our resulting model for the Lorenz 96
atmospheric simulation is competitive and often superior to both a bespoke
baseline and an existing probabilistic machine-learning (GAN) one. This is due
to a superior ability to model temporal correlations compared to standard
first-order autoregressive schemes. The model also generalises to unseen
regimes. We evaluate across a number of metrics from the literature, but also
discuss how the probabilistic metric of likelihood may be a unifying choice for
future probabilistic climate models.
- Abstract(参考訳): 小規模プロセスのモデリングは気候モデルの主要なエラー源であり、パラメータ化によってそのようなプロセスを近似しなければならない低コストモデルの精度を妨げる。
確率性と機械学習を使うことは、よりよいモデルにつながったが、両方の利点を組み合わせる作業が不足している。
確率的枠組み内で物理的に変形したリカレントニューラルネットワークを用いることで,lorenz 96大気シミュレーションのモデルが,従来のベースラインと既存の確率的機械学習(gan)モデルの両方に匹敵することを示した。
これは、標準の1次自己回帰スキームと比較して時間的相関をモデル化する能力が優れているためである。
このモデルは目に見えない体制にも一般化する。
文献から多くの指標を評価するとともに、将来の確率的気候モデルにおいて、確率論的指標が統一的な選択である可能性についても論じる。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - On the Efficient Marginalization of Probabilistic Sequence Models [3.5897534810405403]
この論文は、複雑な確率的クエリに答えるために自己回帰モデルを使うことに焦点を当てている。
我々は,モデルに依存しない逐次モデルにおいて,境界化のための新しい,効率的な近似手法のクラスを開発する。
論文 参考訳(メタデータ) (2024-03-06T19:29:08Z) - Neural parameter calibration for large-scale multi-agent models [0.7734726150561089]
本稿では,ニューラルネットワークを用いてパラメータの精度の高い確率密度を求める手法を提案する。
2つの組み合わせは、非常に大きなシステムであっても、モデルパラメータの密度を素早く見積もることができる強力なツールを作成する。
論文 参考訳(メタデータ) (2022-09-27T17:36:26Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
我々は,マイクロデータモデルに基づく強化学習(MBRL)に寄与する。
マルチモーダルな後続予測を必要とする環境では、混合密度ネットは他のモデルよりも大きなマージンで優れていることがわかった。
また、決定論的モデルは同等であり、実際、確率論的モデルよりも一貫して(非目立ったことではないが)優れていることも見出した。
論文 参考訳(メタデータ) (2021-07-24T11:38:25Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。