論文の概要: A Case for Rejection in Low Resource ML Deployment
- arxiv url: http://arxiv.org/abs/2208.06359v1
- Date: Fri, 12 Aug 2022 16:32:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-15 13:06:54.965637
- Title: A Case for Rejection in Low Resource ML Deployment
- Title(参考訳): 低リソースmlデプロイメントにおける拒絶の1例
- Authors: Jerome White, Pulkit Madaan, Nikhil Shenoy, Apoorv Agnihotri, Makkunda
Sharma, Jigar Doshi
- Abstract要約: 信頼性の高いAI意思決定支援システムを構築するには、モデルをトレーニングする堅牢なデータセットが必要です。
本稿では,その位置を仮定し,概念ベースラインの証明として簡単な解法を提案する。
- 参考スコア(独自算出の注目度): 2.8060121867557815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building reliable AI decision support systems requires a robust set of data
on which to train models; both with respect to quantity and diversity.
Obtaining such datasets can be difficult in resource limited settings, or for
applications in early stages of deployment. Sample rejection is one way to work
around this challenge, however much of the existing work in this area is
ill-suited for such scenarios. This paper substantiates that position and
proposes a simple solution as a proof of concept baseline.
- Abstract(参考訳): 信頼性の高いAI意思決定支援システムを構築するには、量と多様性の両方に関して、モデルをトレーニングする堅牢なデータセットが必要です。
このようなデータセットの取得は、リソース制限された設定や、デプロイメントの初期段階のアプリケーションでは困難である。
サンプルの拒絶は、この課題に取り組む一つの方法であるが、この分野の既存の作業の多くは、そのようなシナリオに不適である。
本稿では,その位置を仮定し,概念ベースラインの証明として簡単な解法を提案する。
関連論文リスト
- FedMAC: Tackling Partial-Modality Missing in Federated Learning with Cross-Modal Aggregation and Contrastive Regularization [11.954904313477176]
Federated Learning(FL)は、分散データソースを使用して機械学習モデルをトレーニングする手法である。
本研究ではFedMACという新しいフレームワークを提案し,FLに欠落した部分モダリティ条件下でのマルチモダリティの解消を図った。
論文 参考訳(メタデータ) (2024-10-04T01:24:02Z) - Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
本稿では,破滅的な記憶を解消するための不確実性を考慮したメモリベース手法を提案する。
特定の特性を持つサンプルを検索し、そのようなサンプル上でモデルを再訓練することで、このアプローチの可能性を実証する。
論文 参考訳(メタデータ) (2024-05-29T09:29:39Z) - Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm [14.517103323409307]
Sim-to-realのギャップは、トレーニングとテスト環境の相違を表している。
この課題に対処するための有望なアプローチは、分布的に堅牢なRLである。
我々は対話型データ収集によるロバストなRLに取り組み、証明可能なサンプル複雑性を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T16:40:22Z) - UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models [55.22048505787125]
本稿ではUNK-VQAと呼ばれる包括的データセットを提案する。
まず、画像または疑問について意図的に摂動することで、既存のデータを拡大する。
そこで我々は,新たなマルチモーダル大規模モデルのゼロショット性能と少数ショット性能を広範囲に評価した。
論文 参考訳(メタデータ) (2023-10-17T02:38:09Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
Informative Data Mining (IDM) と呼ばれる新しいフレームワークを提案し、セマンティックセグメンテーションのための効率的なワンショットドメイン適応を実現する。
IDMは、最も情報性の高いサンプルを特定するために不確実性に基づく選択基準を提供し、迅速に適応し、冗長なトレーニングを減らす。
提案手法は,GTA5/SYNTHIAからCityscapesへの適応タスクにおいて,既存の手法より優れ,56.7%/55.4%の最先端のワンショット性能を実現している。
論文 参考訳(メタデータ) (2023-09-25T15:56:01Z) - SUMMIT: Source-Free Adaptation of Uni-Modal Models to Multi-Modal
Targets [30.262094419776208]
現在のアプローチでは、ソースデータが適応中に利用可能であり、ソースはペア化されたマルチモーダルデータで構成されていると仮定している。
本稿では,2つの相補的な擬似ラベル融合法を自動選択するスイッチングフレームワークを提案する。
提案手法は,mIoUが競合するベースラインよりも最大12%向上することを示す。
論文 参考訳(メタデータ) (2023-08-23T02:57:58Z) - Contrastive Example-Based Control [163.6482792040079]
報酬関数ではなく多段階遷移の暗黙的なモデルを学ぶオフラインのサンプルベース制御法を提案する。
状態ベースおよび画像ベースのオフライン制御タスクの範囲で、学習された報酬関数を使用するベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-07-24T19:43:22Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
本手法は,文献から得られた4つの領域において,最先端の成果が得られることを示す。
提案手法は, 局所性仮定が破られた場合, 既存手法よりも200%近く性能が向上する。
論文 参考訳(メタデータ) (2023-05-26T11:17:45Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Low-Resolution Face Recognition In Resource-Constrained Environments [34.13093606945265]
本研究では,非パラメトリック低解像度顔認識モデルを提案する。
少数のラベル付きデータサンプルで、トレーニングの複雑さが低く、低解像度の入力イメージでトレーニングすることができる。
提案モデルの有効性は,LFWとCMU Multi-PIEデータセットの実験によって実証された。
論文 参考訳(メタデータ) (2020-11-23T19:14:02Z) - The Risks of Invariant Risk Minimization [52.7137956951533]
不変リスク最小化(Invariant Risk Minimization)は、データの深い不変性を学ぶという考え方に基づく目標である。
我々は、IRMの目的に基づく分類の最初の分析と、最近提案されたこれらの代替案について、かなり自然で一般的なモデルで分析する。
IRMは、テストデータがトレーニング分布と十分に類似していない限り、破滅的に失敗する可能性がある。
論文 参考訳(メタデータ) (2020-10-12T14:54:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。