論文の概要: Collective Obfuscation and Crowdsourcing
- arxiv url: http://arxiv.org/abs/2208.06405v1
- Date: Fri, 12 Aug 2022 17:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-15 13:51:44.342357
- Title: Collective Obfuscation and Crowdsourcing
- Title(参考訳): 集合的難読化とクラウドソーシング
- Authors: Benjamin Laufer, Niko A. Grupen
- Abstract要約: レポートプラットフォームの普及には,ユニークなセキュリティとプライバシの影響が伴っていることを,私たちは示しています。
プラットフォームの正当性を阻害することを目的とした,協調的難読化戦略を同定する。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crowdsourcing technologies rely on groups of people to input information that
may be critical for decision-making. This work examines obfuscation in the
context of reporting technologies. We show that widespread use of reporting
platforms comes with unique security and privacy implications, and introduce a
threat model and corresponding taxonomy to outline some of the many attack
vectors in this space. We then perform an empirical analysis of a dataset of
call logs from a controversial, real-world reporting hotline and identify
coordinated obfuscation strategies that are intended to hinder the platform's
legitimacy. We propose a variety of statistical measures to quantify the
strength of this obfuscation strategy with respect to the structural and
semantic characteristics of the reporting attacks in our dataset.
- Abstract(参考訳): クラウドソーシング技術は、意思決定に不可欠な情報を入力するために、人々のグループに依存している。
本研究は, 報告技術における難読化について考察する。
報告プラットフォームの普及は、ユニークなセキュリティとプライバシの影響を伴うことを示し、この分野の多くの攻撃ベクトルを概説する脅威モデルと対応する分類法を導入する。
次に、議論を呼んでいる現実世界のレポートホットラインからコールログのデータセットを実証分析し、プラットフォームの正当性を妨げることを目的とした、協調した難読化戦略を特定します。
我々は,この難読化戦略の強みを,我々のデータセットにおける報告攻撃の構造的および意味的特性に関して定量化する,様々な統計的尺度を提案する。
関連論文リスト
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - AnnoCTR: A Dataset for Detecting and Linking Entities, Tactics, and Techniques in Cyber Threat Reports [3.6785107661544805]
我々は、新しいCC-BY-SAライセンスのサイバー脅威レポートであるAnnoCTRを提示する。
レポートはドメインの専門家によって、名前付きエンティティ、時間表現、サイバーセキュリティ特有の概念によって注釈付けされている。
少数のシナリオでは、テキストで明示的にあるいは暗黙的に言及されるMITRE ATT&CKの概念を識別するために、MITRE ATT&CKの概念記述は、データ拡張のトレーニングに有効な情報源であることがわかった。
論文 参考訳(メタデータ) (2024-04-11T14:04:36Z) - Unveiling Safety Vulnerabilities of Large Language Models [4.562678399685183]
本稿では,AttaQと呼ばれる質問の形で,敵対的な事例を含むユニークなデータセットを提案する。
各種モデルの脆弱性を解析することにより,データセットの有効性を評価する。
脆弱なセマンティック領域を特定し命名するための新しい自動アプローチを提案する。
論文 参考訳(メタデータ) (2023-11-07T16:50:33Z) - User-Centered Security in Natural Language Processing [0.7106986689736825]
自然言語処理(NLP)におけるユーザ中心のセキュリティの枠組みの提案
NLP内の2つのセキュリティドメインに重点を置いている。
論文 参考訳(メタデータ) (2023-01-10T22:34:19Z) - Multi-features based Semantic Augmentation Networks for Named Entity
Recognition in Threat Intelligence [7.321994923276344]
本稿では,入力トークンの表現を豊かにするために,異なる言語的特徴を取り入れた意味拡張手法を提案する。
特に,各入力トークンの構成特徴,形態的特徴,音声特徴の一部を符号化して集約し,その堅牢性を向上させる。
サイバーセキュリティデータセットDNRTIとMalwareTextDBについて実験を行い,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2022-07-01T06:55:12Z) - A Unified Evaluation of Textual Backdoor Learning: Frameworks and
Benchmarks [72.7373468905418]
我々は,テキストバックドア学習の実装と評価を促進するオープンソースツールキットOpenBackdoorを開発した。
また,単純なクラスタリングに基づく防御ベースラインであるCUBEを提案する。
論文 参考訳(メタデータ) (2022-06-17T02:29:23Z) - Learning-based Hybrid Local Search for the Hard-label Textual Attack [53.92227690452377]
我々は,攻撃者が予測ラベルにのみアクセス可能な,滅多に調査されていないが厳格な設定,すなわちハードラベル攻撃を考える。
そこで本研究では,Learning-based Hybrid Local Search (LHLS)アルゴリズムという,新たなハードラベル攻撃を提案する。
我々のLHLSは、攻撃性能と敵の品質に関する既存のハードラベル攻撃を著しく上回っている。
論文 参考訳(メタデータ) (2022-01-20T14:16:07Z) - Detecting adversaries in Crowdsourcing [71.20185379303479]
本研究は, クラウドソース型分類における敵の影響を, 人気のダウィド・アンド・スケネモデルを用いて検討する。
敵は、クラウドソーシングモデルから任意に逸脱することを許され、潜在的に協力する可能性がある。
我々は,アノテータ応答の2次モーメント構造を利用して,多数の敵を識別し,クラウドソーシングタスクへの影響を軽減するアプローチを開発した。
論文 参考訳(メタデータ) (2021-10-07T15:07:07Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
我々は,非構造化テキストから戦術,技法,手順を自動的に抽出するいくつかの分類手法を評価する。
我々は、私たちの発見に基づいて構築されたツールrcATTを紹介し、サイバー脅威レポートの自動分析をサポートするために、セキュリティコミュニティに自由に配布する。
論文 参考訳(メタデータ) (2020-04-29T16:45:14Z) - Adversarial Augmentation Policy Search for Domain and Cross-Lingual
Generalization in Reading Comprehension [96.62963688510035]
理解モデルを読むことは、しばしばトレーニングデータセットのニュアンスに過度に適合し、敵対的な評価に失敗する。
本稿では,複数の効果的な敵と自動データ拡張ポリシー探索手法を提案し,対角的評価に対して,読解理解モデルをより堅牢にすることを目的とする。
論文 参考訳(メタデータ) (2020-04-13T17:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。