論文の概要: Evaluating Selective Encryption Against Gradient Inversion Attacks
- arxiv url: http://arxiv.org/abs/2508.04155v1
- Date: Wed, 06 Aug 2025 07:31:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.593201
- Title: Evaluating Selective Encryption Against Gradient Inversion Attacks
- Title(参考訳): グラディエント・インバージョン・アタックに対する選択的暗号化の評価
- Authors: Jiajun Gu, Yuhang Yao, Shuaiqi Wang, Carlee Joe-Wong,
- Abstract要約: グラディエント・インバージョン・アタックは、フェデレート学習のような分散トレーニングフレームワークに重大なプライバシー上の脅威をもたらす。
本稿では,最先端攻撃に対する重要な指標の異なる選択的暗号化手法を体系的に評価する。
- 参考スコア(独自算出の注目度): 15.000605214632243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient inversion attacks pose significant privacy threats to distributed training frameworks such as federated learning, enabling malicious parties to reconstruct sensitive local training data from gradient communications between clients and an aggregation server during the aggregation process. While traditional encryption-based defenses, such as homomorphic encryption, offer strong privacy guarantees without compromising model utility, they often incur prohibitive computational overheads. To mitigate this, selective encryption has emerged as a promising approach, encrypting only a subset of gradient data based on the data's significance under a certain metric. However, there have been few systematic studies on how to specify this metric in practice. This paper systematically evaluates selective encryption methods with different significance metrics against state-of-the-art attacks. Our findings demonstrate the feasibility of selective encryption in reducing computational overhead while maintaining resilience against attacks. We propose a distance-based significance analysis framework that provides theoretical foundations for selecting critical gradient elements for encryption. Through extensive experiments on different model architectures (LeNet, CNN, BERT, GPT-2) and attack types, we identify gradient magnitude as a generally effective metric for protection against optimization-based gradient inversions. However, we also observe that no single selective encryption strategy is universally optimal across all attack scenarios, and we provide guidelines for choosing appropriate strategies for different model architectures and privacy requirements.
- Abstract(参考訳): グラディエント・インバージョン・アタックは、フェデレートラーニングのような分散トレーニングフレームワークに重大なプライバシー上の脅威をもたらし、悪意のある当事者が集約プロセス中にクライアントとアグリゲーションサーバ間のグラディエント通信から機密性の高いローカルトレーニングデータを再構築することを可能にする。
従来の暗号化ベースの防御、例えば同型暗号化は、モデルユーティリティを損なうことなく強力なプライバシー保証を提供するが、しばしば禁止的な計算オーバーヘッドを発生させる。
これを軽減するために、選択暗号化は有望なアプローチとして現れ、あるメトリクスの下でデータの重要度に基づいて勾配データのサブセットのみを暗号化している。
しかし、この計量を実際にどのように特定するかに関する体系的な研究はほとんど行われていない。
本稿では,最先端攻撃に対する重要な指標の異なる選択的暗号化手法を体系的に評価する。
本研究は,攻撃に対するレジリエンスを維持しつつ,計算オーバーヘッドを低減するための選択的暗号化の実現可能性を示すものである。
本稿では,暗号化のための重要な勾配要素を選択するための理論的基盤を提供する,距離に基づく重要度分析フレームワークを提案する。
異なるモデルアーキテクチャ (LeNet, CNN, BERT, GPT-2) と攻撃型 (GPT-2) の広範な実験を通じて、最適化に基づく勾配インバージョンに対する保護のための一般的な有効な指標として勾配度を同定する。
しかし、攻撃シナリオ全体において、単一の選択型暗号化戦略が普遍的に最適ではないことも観察し、異なるモデルアーキテクチャとプライバシ要件に対して適切な戦略を選択するためのガイドラインを提供する。
関連論文リスト
- DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective [59.66984417026933]
内的特徴(IF)と外的特徴(EF)(監査のための技術導入)に依存した既存手法の分類を新たに導入する。
回避攻撃(evasion attack)は、データセットの使用を隠蔽するために設計されたもので、偽造攻撃(forgery attack)は、未使用のデータセットを誤って含んでいることを意図している。
さらに,既存手法の理解と攻撃目標に基づいて,回避のための分離・除去・検出,偽造の逆例に基づく攻撃方法など,系統的な攻撃戦略を提案する。
私たちのベンチマークであるData dataBenchは、17の回避攻撃、5の偽攻撃、9の攻撃で構成されています。
論文 参考訳(メタデータ) (2025-07-08T03:07:15Z) - Secure Distributed Learning for CAVs: Defending Against Gradient Leakage with Leveled Homomorphic Encryption [0.0]
ホモモルフィック暗号化(HE)は、差分プライバシー(DP)とセキュアマルチパーティ計算(SMPC)に代わる有望な代替手段を提供する
資源制約のある環境において,フェデレートラーニング(FL)に最も適したHE方式の評価を行った。
我々は、モデル精度を維持しながら、Gradients (DLG)攻撃からのDeep Leakageを効果的に軽減するHEベースのFLパイプラインを開発した。
論文 参考訳(メタデータ) (2025-06-09T16:12:18Z) - Benchmarking Unified Face Attack Detection via Hierarchical Prompt Tuning [58.16354555208417]
PADとFFDはそれぞれ物理メディアベースのプレゼンテーションアタックとデジタル編集ベースのDeepFakeから顔データを保護するために提案されている。
これら2つのカテゴリの攻撃を同時に処理する統一顔攻撃検出モデルがないことは、主に2つの要因に起因する。
本稿では,異なる意味空間から複数の分類基準を適応的に探索する,視覚言語モデルに基づく階層型プロンプトチューニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-19T16:35:45Z) - Privacy Preserving and Robust Aggregation for Cross-Silo Federated Learning in Non-IID Settings [1.8434042562191815]
フェデレーション平均化は、フェデレーション学習において最も広く使われているアグリゲーション戦略である。
私たちのメソッドは、追加のクライアントメタデータを不要にするため、グラデーション更新のみに依存しています。
本研究は, グラデーションマスキングの有効性を, フェデレート学習のための実用的でセキュアなソリューションとして確立した。
論文 参考訳(メタデータ) (2025-03-06T14:06:20Z) - Hierarchical Manifold Projection for Ransomware Detection: A Novel Geometric Approach to Identifying Malicious Encryption Patterns [0.0]
暗号化ベースのサイバー脅威は進化を続けており、従来の検出メカニズムをバイパスする技術がますます高度化している。
階層的多様体射影によって構成された新しい分類フレームワークは、悪意のある暗号化を検出する数学的アプローチを導入する。
提案手法は,暗号シーケンスを構造化多様体の埋め込みに変換し,非ユークリッド特徴分離性による分類ロバスト性を確保する。
論文 参考訳(メタデータ) (2025-02-11T23:20:58Z) - Encrypted Large Model Inference: The Equivariant Encryption Paradigm [18.547945807599543]
Equivariant Encryption(EE)は,暗号化されたデータに対して,性能上のオーバーヘッドがゼロに近いセキュアな"盲目"推論を可能にするように設計された,新しいパラダイムである。
計算グラフ全体を暗号化する完全同型アプローチとは異なり、EEはニューラルネットワーク層内の重要な内部表現を選択的に難読化する。
EEは高い忠実性とスループットを維持しており、ロバストなデータの機密性と、現代的な大規模モデル推論の厳密な効率要件の間のギャップを効果的に埋めています。
論文 参考訳(メタデータ) (2025-02-03T03:05:20Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Learning-based Hybrid Local Search for the Hard-label Textual Attack [53.92227690452377]
我々は,攻撃者が予測ラベルにのみアクセス可能な,滅多に調査されていないが厳格な設定,すなわちハードラベル攻撃を考える。
そこで本研究では,Learning-based Hybrid Local Search (LHLS)アルゴリズムという,新たなハードラベル攻撃を提案する。
我々のLHLSは、攻撃性能と敵の品質に関する既存のハードラベル攻撃を著しく上回っている。
論文 参考訳(メタデータ) (2022-01-20T14:16:07Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - FedBoosting: Federated Learning with Gradient Protected Boosting for
Text Recognition [7.988454173034258]
フェデレートラーニング(FL)フレームワークは、データの集中化やデータオーナ間の共有なしに、共有モデルを協調的に学習することを可能にする。
本稿では,非独立性および非独立性分散(Non-IID)データに基づくジョイントモデルの一般化能力について述べる。
本稿では,FLの一般化と勾配リーク問題に対処する新しいブースティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-14T18:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。