Coupled Layer Construction for Synthetic Hall Effects in Driven Systems
- URL: http://arxiv.org/abs/2208.06419v2
- Date: Mon, 17 Oct 2022 20:03:03 GMT
- Title: Coupled Layer Construction for Synthetic Hall Effects in Driven Systems
- Authors: David M. Long, Philip J. D. Crowley, Anushya Chandran
- Abstract summary: Quasiperiodically driven fermionic systems can support topological phases not realized in equilibrium.
We develop a coupled layer construction for tight-binding models of these phases in $din1,2$ spatial dimensions.
A numerical study of the phase diagram for $(d+D) = (1+2)$ shows: (i) robust topological and trivial phases separated by a sharp phase transition; (ii) charge diffusion and a half-integer energy current between the drives at the transition; and (iii) a long-lived topological energy current which remains present when weak interactions are introduced.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quasiperiodically driven fermionic systems can support topological phases not
realized in equilibrium. The fermions are localized in the bulk, but support
quantized energy currents at the edge. These phases were discovered through an
abstract classification, and few microscopic models exist. We develop a coupled
layer construction for tight-binding models of these phases in $d\in\{1,2\}$
spatial dimensions, with any number of incommensurate drive frequencies $D$.
The models exhibit quantized responses associated with synthetic two- and
four-dimensional quantum Hall effects in the steady state. A numerical study of
the phase diagram for $(d+D) = (1+2)$ shows: (i) robust topological and trivial
phases separated by a sharp phase transition; (ii) charge diffusion and a
half-integer energy current between the drives at the transition; and (iii) a
long-lived topological energy current which remains present when weak
interactions are introduced.
Related papers
- Dynamics and Phases of Nonunitary Floquet Transverse-Field Ising Model [0.5141137421503899]
We analyze the nonunitary Floquet- transverse-field I integrable model with complex nearest-neighbor couplings and complex transverse fields.
The scaling of entanglement entropy in steady states and the evolution after a quench are compatible with the non-Hermitian generalization of the quasiparticle picture of Calabrese and Cardy.
arXiv Detail & Related papers (2023-06-12T21:15:11Z) - Quantum Phase Transitions in a Model Hamiltonian Exhibiting Entangled
Simultaneous Fermion-Pair and Exciton Condensations [0.0]
Quantum states of a novel Bose-Einstein condensate, in which both fermion-pair and exciton condensations are simultaneously present, have recently been realized theoretically in a model Hamiltonian system.
Here we identify quantum phase transitions in that model based on a geometric analysis of the convex set of ground-state 2-particle reduced density matrices (2-RDMs)
The set, furthermore, shows that the fermion-exciton condensate (FEC) lies along the second-order phase transition between the exciton and fermion-pair condensate phases.
arXiv Detail & Related papers (2022-12-29T17:21:32Z) - Nonequilibrium phases of ultracold bosons with cavity-induced dynamic
gauge fields [0.0]
We study nonequilibrium dynamical phases appearing in a two-leg bosonic lattice model with leg-dependent, dynamical complex tunnelings mediated by two-photon Raman processes.
Notably, the phase diagram features a plethora of nonequilibrium dynamical phases including limit-cycle and chaotic phases.
In the end, we relate regular periodic dynamics (i.e., limit-cycle phases) of the system to time crystals.
arXiv Detail & Related papers (2022-08-09T08:37:03Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Out of equilibrium Phase Diagram of the Quantum Random Energy Model [7.775545390766461]
We study the out-of-equilibrium phase diagram of the quantum version of Random Energy Model.
We apply different theoretical methods tailored for high-dimensional lattices.
arXiv Detail & Related papers (2020-09-21T12:41:50Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Kinetically constrained freezing transition in a dipole-conserving
system [0.4014524824655105]
We study a lattice gas of particles in one dimension with strictly finite-range interactions.
We find two distinct phases: Near half filling the system thermalizes subdiffusively, with almost all configurations belonging to a single dynamically connected sector.
We study the static and dynamic scaling properties of this weak-to-strong fragmentation phase transition in a kinetically constrained classical Markov circuit model.
arXiv Detail & Related papers (2020-03-31T20:38:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.