論文の概要: GEDI: A Graph-based End-to-end Data Imputation Framework
- arxiv url: http://arxiv.org/abs/2208.06573v2
- Date: Tue, 12 Sep 2023 06:09:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 17:57:31.202800
- Title: GEDI: A Graph-based End-to-end Data Imputation Framework
- Title(参考訳): GEDI: グラフベースのエンドツーエンドデータインプットフレームワーク
- Authors: Katrina Chen, Xiuqin Liang, Zheng Ma, Zhibin Zhang
- Abstract要約: 提案手法はトランスフォーマーネットワークとグラフ構造学習を用いて,観測における特徴と類似点間の文脈的関係を反復的に洗練する。
メタラーニングフレームワークを使用して、下流の予測タスクに影響を及ぼす機能を選択する。
実世界の大規模データセットで実験を行い,提案した計算プロセスが一貫して計算性能とラベル予測性能を向上させることを示す。
- 参考スコア(独自算出の注目度): 3.5478302034537705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data imputation is an effective way to handle missing data, which is common
in practical applications. In this study, we propose and test a novel data
imputation process that achieve two important goals: (1) preserve the row-wise
similarities among observations and column-wise contextual relationships among
features in the feature matrix, and (2) tailor the imputation process to
specific downstream label prediction task. The proposed imputation process uses
Transformer network and graph structure learning to iteratively refine the
contextual relationships among features and similarities among observations.
Moreover, it uses a meta-learning framework to select features that are
influential to the downstream prediction task of interest. We conduct
experiments on real-world large data sets, and show that the proposed
imputation process consistently improves imputation and label prediction
performance over a variety of benchmark methods.
- Abstract(参考訳): データ計算は、欠落したデータを扱う効果的な方法であり、実際的なアプリケーションでは一般的である。
本研究では,(1)特徴量行列の特徴量間の行方向の類似性と列方向の文脈関係を保存し,(2)特定の下流ラベル予測タスクにインプット処理を調整する,という2つの重要な目標を達成する新しいデータ計算プロセスを提案する。
提案手法はトランスフォーマーネットワークとグラフ構造学習を用いて,観測における特徴と類似点間の文脈関係を反復的に洗練する。
さらに、メタラーニングフレームワークを使用して、下流の予測タスクに影響を及ぼす機能を選択する。
本研究では,実世界の大規模データセットについて実験を行い,提案手法が様々なベンチマーク手法に対してインプテーションとラベル予測性能を一貫して向上させることを示す。
関連論文リスト
- Enhancing Missing Data Imputation through Combined Bipartite Graph and Complete Directed Graph [18.06658040186476]
BCGNN(Bipartite and Complete Directed Graph Neural Network)という新しいフレームワークを導入する。
BCGNN内では、観察と特徴は2つの異なるノードタイプとして区別され、観察された特徴の値はそれらをリンクする属性付きエッジに変換される。
並行して、完全な有向グラフセグメントは、機能間の複雑な相互依存性を網羅し、伝達する。
論文 参考訳(メタデータ) (2024-11-07T17:48:37Z) - From Text to Treatment Effects: A Meta-Learning Approach to Handling Text-Based Confounding [7.5348062792]
本稿では,共起変数をテキストで表現する場合のメタラーナーの性能について検討する。
共同創設者の事前学習したテキスト表現を用いた学習者は,CATE推定精度の向上を図っている。
テキスト埋め込みの絡み合った性質のため、これらのモデルは、完全な共同創設者の知識を持つメタ学習者のパフォーマンスと完全には一致しない。
論文 参考訳(メタデータ) (2024-09-23T19:46:19Z) - Data Imputation by Pursuing Better Classification: A Supervised Kernel-Based Method [23.16359277296206]
本稿では, 監視情報を効果的に活用し, 欠落したデータを分類する手法を提案する。
我々のアルゴリズムは、データの60%以上が欠落している場合、他の手法よりもはるかに優れています。
論文 参考訳(メタデータ) (2024-05-13T14:44:02Z) - Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence [51.54175067684008]
本稿では,高密度マッチングタスク用に設計されたTransformerベースの積分機能とコスト集約ネットワークを提案する。
まず, 特徴集約とコスト集約が異なる特徴を示し, 双方の集約プロセスの司法的利用から生じる実質的な利益の可能性を明らかにした。
本フレームワークは意味マッチングのための標準ベンチマークで評価され,また幾何マッチングにも適用された。
論文 参考訳(メタデータ) (2024-03-17T07:02:55Z) - The Trade-off between Universality and Label Efficiency of
Representations from Contrastive Learning [32.15608637930748]
2つのデシダラタの間にはトレードオフがあることを示し、同時に両方を達成できない可能性があることを示す。
我々は、理論データモデルを用いて分析を行い、より多様な事前学習データにより、異なるタスクに対してより多様な機能が得られる一方で、タスク固有の機能に重点を置いていないことを示す。
論文 参考訳(メタデータ) (2023-02-28T22:14:33Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z) - Propositionalization and Embeddings: Two Sides of the Same Coin [0.0]
本稿では,リレーショナル学習におけるデータ処理技術について概説する。
それは命題化とデータ変換のアプローチの埋め込みに焦点を当てている。
統一手法の2つの効率的な実装を提案する。
論文 参考訳(メタデータ) (2020-06-08T08:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。