論文の概要: Enhancing Missing Data Imputation through Combined Bipartite Graph and Complete Directed Graph
- arxiv url: http://arxiv.org/abs/2411.04907v1
- Date: Thu, 07 Nov 2024 17:48:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:51.769624
- Title: Enhancing Missing Data Imputation through Combined Bipartite Graph and Complete Directed Graph
- Title(参考訳): 両部グラフと全方向グラフの併用による欠測データ計算の強化
- Authors: Zhaoyang Zhang, Hongtu Zhu, Ziqi Chen, Yingjie Zhang, Hai Shu,
- Abstract要約: BCGNN(Bipartite and Complete Directed Graph Neural Network)という新しいフレームワークを導入する。
BCGNN内では、観察と特徴は2つの異なるノードタイプとして区別され、観察された特徴の値はそれらをリンクする属性付きエッジに変換される。
並行して、完全な有向グラフセグメントは、機能間の複雑な相互依存性を網羅し、伝達する。
- 参考スコア(独自算出の注目度): 18.06658040186476
- License:
- Abstract: In this paper, we aim to address a significant challenge in the field of missing data imputation: identifying and leveraging the interdependencies among features to enhance missing data imputation for tabular data. We introduce a novel framework named the Bipartite and Complete Directed Graph Neural Network (BCGNN). Within BCGNN, observations and features are differentiated as two distinct node types, and the values of observed features are converted into attributed edges linking them. The bipartite segment of our framework inductively learns embedding representations for nodes, efficiently utilizing the comprehensive information encapsulated in the attributed edges. In parallel, the complete directed graph segment adeptly outlines and communicates the complex interdependencies among features. When compared to contemporary leading imputation methodologies, BCGNN consistently outperforms them, achieving a noteworthy average reduction of 15% in mean absolute error for feature imputation tasks under different missing mechanisms. Our extensive experimental investigation confirms that an in-depth grasp of the interdependence structure substantially enhances the model's feature embedding ability. We also highlight the model's superior performance in label prediction tasks involving missing data, and its formidable ability to generalize to unseen data points.
- Abstract(参考訳): 本稿では,欠落データ計算の分野における重要な課題として,機能間の相互依存を識別・活用し,グラフデータに対する欠落データ計算を強化することを目的とする。
本稿では,BCGNN(Bipartite and Complete Directed Graph Neural Network)という新しいフレームワークを紹介する。
BCGNN内では、観察と特徴は2つの異なるノードタイプとして区別され、観察された特徴の値はそれらをリンクする属性付きエッジに変換される。
我々のフレームワークの2部分節は、属性付きエッジにカプセル化された包括的な情報を効率的に活用して、ノードの埋め込み表現を誘導的に学習する。
並行して、完全な有向グラフセグメントは、機能間の複雑な相互依存性を網羅し、伝達する。
現代の主要な計算手法と比較すると、BCGNNはそれらを常に上回り、異なる機構の欠如した特徴計算タスクに対して平均15%の絶対誤差を達成している。
本研究は, 相互依存構造を深く把握することで, モデルの特徴埋込能力を大幅に向上させることを実証する。
また、欠落データを含むラベル予測タスクにおけるモデルの性能と、見当たらないデータポイントに一般化する能力についても強調する。
関連論文リスト
- Self-Supervised Conditional Distribution Learning on Graphs [15.730933577970687]
本稿では,従来の特徴に対して,弱い特徴と強く拡張された特徴の条件分布を整列するエンドツーエンドグラフ表現学習モデルを提案する。
このアライメントは、グラフ構造化データ拡張による本質的な意味情報の破壊のリスクを効果的に低減する。
論文 参考訳(メタデータ) (2024-11-20T07:26:36Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
論文 参考訳(メタデータ) (2023-09-09T06:18:50Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - TGNN: A Joint Semi-supervised Framework for Graph-level Classification [34.300070497510276]
我々は、ツイングラフニューラルネットワーク(TGNN)と呼ばれる新しい半教師付きフレームワークを提案する。
グラフ構造情報を補完的なビューから探索するために、TGNNにはメッセージパッシングモジュールとグラフカーネルモジュールがあります。
我々は,TGNNを様々な公開データセットで評価し,高い性能が得られることを示す。
論文 参考訳(メタデータ) (2023-04-23T15:42:11Z) - T2G-Former: Organizing Tabular Features into Relation Graphs Promotes
Heterogeneous Feature Interaction [15.464703129175298]
本稿では,グラフ特徴間の関係を自動的に推定し,関連する特徴間のエッジを割り当てることでグラフを構築するグラフ推定器を提案する。
提案したグラフ推定器に基づいて,T2G-Formerと呼ばれる表型学習に適したベスポーク変換器ネットワークを提案する。
我々のT2G-FormerはDNNにおいて優れた性能を発揮し、非深さ勾配ブースト決定木モデルと競合する。
論文 参考訳(メタデータ) (2022-11-30T10:39:24Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Unveiling Anomalous Edges and Nominal Connectivity of Attributed
Networks [53.56901624204265]
本研究では、相補的な強さを持つ2つの異なる定式化を用いて、属性グラフの異常なエッジを明らかにする。
まず、グラフデータマトリックスを低ランクとスパースコンポーネントに分解することで、パフォーマンスを著しく向上させる。
第2は、乱れのないグラフを頑健に復元することにより、第1のスコープを広げ、異常識別性能を高める。
論文 参考訳(メタデータ) (2021-04-17T20:00:40Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。