論文の概要: Combating Label Distribution Shift for Active Domain Adaptation
- arxiv url: http://arxiv.org/abs/2208.06604v1
- Date: Sat, 13 Aug 2022 09:06:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-16 12:56:23.362205
- Title: Combating Label Distribution Shift for Active Domain Adaptation
- Title(参考訳): アクティブドメイン適応のためのラベル分布シフト対策
- Authors: Sehyun Hwang, Sohyun Lee, Sungyeon Kim, Jungseul Ok, Suha Kwak
- Abstract要約: 我々は、未ラベルのターゲットデータに対するアクティブドメイン適応(ADA)の問題を考える。
ドメイン適応におけるソースとターゲット間のラベル分布ミスマッチから重要な問題に対する最近の分析から着想を得て,ADAで初めてこの問題に対処する手法を考案した。
- 参考スコア(独自算出の注目度): 16.270897459117755
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We consider the problem of active domain adaptation (ADA) to unlabeled target
data, of which subset is actively selected and labeled given a budget
constraint. Inspired by recent analysis on a critical issue from label
distribution mismatch between source and target in domain adaptation, we devise
a method that addresses the issue for the first time in ADA. At its heart lies
a novel sampling strategy, which seeks target data that best approximate the
entire target distribution as well as being representative, diverse, and
uncertain. The sampled target data are then used not only for supervised
learning but also for matching label distributions of source and target
domains, leading to remarkable performance improvement. On four public
benchmarks, our method substantially outperforms existing methods in every
adaptation scenario.
- Abstract(参考訳): 本稿では,未ラベルの対象データに対するアクティブドメイン適応(ADA)の問題について考察する。
ドメイン適応におけるソースとターゲット間のラベル分布ミスマッチから重要な問題に対する最近の分析から着想を得て,ADAで初めてこの問題に対処する手法を考案した。
中心に新しいサンプリング戦略があり、ターゲットの分布全体を最もよく近似し、代表的で多様性があり、不確実であるターゲットデータを求める。
サンプルされたターゲットデータは教師付き学習だけでなく、ソースドメインとターゲットドメインのラベル分布のマッチングにも使用され、パフォーマンスが著しく向上する。
4つの公開ベンチマークにおいて,提案手法は適応シナリオ毎に既存の手法を実質的に上回っている。
関連論文リスト
- Adversarial Semi-Supervised Domain Adaptation for Semantic Segmentation:
A New Role for Labeled Target Samples [7.199108088621308]
我々は、ラベル付き対象データがソースサンプルまたは実際のターゲットサンプルとして振る舞う場合に、新たなトレーニング目標損失を設計する。
提案手法を支援するために,ソースデータとラベル付きターゲットデータを混合し,同じ適応プロセスを適用する補完手法を検討する。
本稿では,GTA5,SynTHIA,Cityscapesのベンチマーク実験を通じて得られた知見を紹介する。
論文 参考訳(メタデータ) (2023-12-12T15:40:22Z) - Divide and Adapt: Active Domain Adaptation via Customized Learning [56.79144758380419]
対象インスタンスを成層化可能な4つのカテゴリに分割する新しいADAフレームワークであるDiaNA(Divide-and-Adapt)を提案する。
不確実性とドメイン性に基づく新しいデータ分割プロトコルにより、DiaNAは最も有利なサンプルを正確に認識することができる。
の精神のおかげで、DiaNAはドメインギャップの大きなバリエーションでデータを処理できる。
論文 参考訳(メタデータ) (2023-07-21T14:37:17Z) - Cycle Label-Consistent Networks for Unsupervised Domain Adaptation [57.29464116557734]
ドメイン適応は、ラベル付きソースドメインを活用して、異なる分布を持つラベル付きターゲットドメインの分類子を学ぶことを目的としています。
本稿では,分類ラベルのサイクル整合性を利用して,シンプルで効率的な領域適応手法,すなわちCycle Label-Consistent Network (CLCN)を提案する。
MNIST-USPS-SVHN, Office-31, Office-Home, Image CLEF-DAベンチマークに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-05-27T13:09:08Z) - Loss-based Sequential Learning for Active Domain Adaptation [14.366263836801485]
本稿では,ドメインタイプ(ソース/ターゲット)とラベルネス(ラベル付き/ラベルなし)の両方を考慮した逐次学習を導入する。
我々のモデルは、様々なベンチマークデータセットのベースラインモデルと同様に、従来の手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2022-04-25T14:00:04Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - S$^3$VAADA: Submodular Subset Selection for Virtual Adversarial Active
Domain Adaptation [49.01925978752677]
現実のシナリオでは、少数のターゲットデータに対してラベルを取得することは可能かもしれません。
我々は,S$3$VAADAを提案する。これは,ラベルに対する最大情報サブセットを選択するための,新しいサブモジュール基準を導入し,また,クラスタベースのDA手順を強化する。
我々のアプローチは、ドメインシフトの度合いの異なるデータセットにおいて、競合する最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2021-09-18T10:53:57Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - A Sample Selection Approach for Universal Domain Adaptation [94.80212602202518]
普遍シナリオにおける教師なし領域適応の問題について検討する。
ソースドメインとターゲットドメインの間で共有されるクラスは、一部のみである。
共有クラスのサンプルの同定に有効なスコアリング方式を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。