An integrated photonic engine for programmable atomic control
- URL: http://arxiv.org/abs/2208.06732v2
- Date: Wed, 23 Oct 2024 22:00:26 GMT
- Title: An integrated photonic engine for programmable atomic control
- Authors: Ian Christen, Madison Sutula, Thomas Propson, Hamed Sattari, Gregory Choong, Christopher Panuski, Alexander Melville, Justin Mallek, Scott Hamilton, P. Benjamin Dixon, Adrian J. Menssen, Danielle Braje, Amir H. Ghadimi, Dirk Englund,
- Abstract summary: Miniaturization of optical components has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices.
We propose and implement a scalable and reconfigurable photonic architecture for multi-channel quantum control using integrated, visible-light modulators.
- Score: 29.81784450632149
- License:
- Abstract: Solutions for scalable, high-performance optical control are important for the development of scaled atom-based quantum technologies. Modulation of many individual optical beams is central to the application of arbitrary gate and control sequences on arrays of atoms or atom-like systems. At telecom wavelengths, miniaturization of optical components via photonic integration has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices. However, these material platforms for high-speed telecom integrated photonics are not transparent at the short wavelengths required by leading atomic systems. Here, we propose and implement a scalable and reconfigurable photonic architecture for multi-channel quantum control using integrated, visible-light modulators based on thin-film lithium niobate. Our approach combines techniques in free-space optics, holography, and control theory together with a sixteen-channel integrated photonic device to stabilize temporal and cross-channel power deviations and enable precise and uniform control. Applying this device to a homogeneous constellation of silicon-vacancy artificial atoms in diamond, we present techniques to spatially and spectrally address a dynamically-selectable set of these stochastically-positioned point emitters. We anticipate that this scalable and reconfigurable optical architecture will lead to systems that could enable parallel individual programmability of large many-body atomic systems, which is a critical step towards universal quantum computation on such hardware.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Super-resolved snapshot hyperspectral imaging of solid-state quantum
emitters for high-throughput integrated quantum technologies [2.369149909203103]
We introduce the concept of hyperspectral imaging in quantum optics, for the first time, to address such a long-standing issue.
With the extracted quantum dot positions and emission wavelengths, surface-emitting quantum light sources and in-plane photonic circuits can be deterministically fabricated.
Our work is expected to change the landscape of integrated quantum photonic technology.
arXiv Detail & Related papers (2023-11-05T11:51:22Z) - Tunable quantum emitters on large-scale foundry silicon photonics [0.6165122427320179]
Integration of atomic quantum systems with single-emitter tunability remains an open challenge.
Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters.
We achieve single photon emission via resonance fluorescence and scalable emission wavelength tunability through an electrically controlled non-volatile memory.
arXiv Detail & Related papers (2023-06-10T15:04:30Z) - Modular chip-integrated photonic control of artificial atoms in diamond
nanostructures [0.0]
Atom-like emitters in diamond have emerged as a leading system for optically networked quantum memories.
We introduce a modular architecture of piezoelectrically-actuated atom-control PICs and artificial atoms embedded in diamond nanostructures.
arXiv Detail & Related papers (2023-01-09T21:49:44Z) - Programmable photonic integrated meshes for modular generation of
optical entanglement links [0.0]
Large-scale generation of quantum entanglement between individually controllable qubits is at the core of quantum computing, communications, and sensing.
Here we introduce a programmable photonic integrated circuit (PIC), realized in a piezo-actuated silicon nitride (SiN)-in-oxide CMOS-compatible process.
The visible-spectrum photonic integrated mesh is programmed to generate optical connectivity on up to N = 8 inputs for a range of optically-heralded entanglement protocols.
arXiv Detail & Related papers (2022-08-29T22:12:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Generation of Photonic Matrix Product States with Rydberg Atomic Arrays [63.62764375279861]
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
arXiv Detail & Related papers (2020-11-08T07:59:55Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Integrated multi-wavelength control of an ion qubit [0.0]
Monolithic integration of control technologies for atomic systems is a promising route to the development of quantum computers and portable quantum sensors.
Here we demonstrate a surface-electrode ion-trap chip using integrated waveguides and grating couplers.
Laser light from violet to infrared is coupled onto the chip via an optical-fiber array, creating an inherently stable optical path.
arXiv Detail & Related papers (2020-01-14T21:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.