Generation of Photonic Matrix Product States with Rydberg Atomic Arrays
- URL: http://arxiv.org/abs/2011.03919v2
- Date: Tue, 13 Apr 2021 19:20:13 GMT
- Title: Generation of Photonic Matrix Product States with Rydberg Atomic Arrays
- Authors: Zhi-Yuan Wei, Daniel Malz, Alejandro Gonz\'alez-Tudela, J. Ignacio
Cirac
- Abstract summary: We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
- Score: 63.62764375279861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show how one can deterministically generate photonic matrix product states
with high bond and physical dimensions with an atomic array if one has access
to a Rydberg-blockade mechanism. We develop both a quantum gate and an optimal
control approach to universally control the system and analyze the photon
retrieval efficiency of atomic arrays. Comprehensive modeling of the system
shows that our scheme is capable of generating a large number of entangled
photons. We further develop a multi-port photon emission approach that can
efficiently distribute entangled photons into free space in several directions,
which can become a useful tool in future quantum networks.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - A complete scheme for atom-mediated deterministic photonic graph state generation [0.0]
Highly-entangled multi-photon graph states are a crucial resource in photonic quantum computation and communication.
We show how harnessing single-atom-based photonic operations can enable deterministic generation of photonic graph states.
arXiv Detail & Related papers (2024-06-02T20:33:40Z) - Deterministic generation of arbitrary n-photon states in an integrated
photonic system [0.0]
We propose a chip-integrable scheme to generate a group of n photons with very high fidelity based on the long-range collective interaction between the emitters mediated by the waveguide modes.
Our results can find important applications in the areas such as photonic-chip-based quantum information processing and quantum metrology.
arXiv Detail & Related papers (2023-05-17T01:24:11Z) - Loss-tolerant architecture for quantum computing with quantum emitters [0.0]
We develop an architecture for measurement-based quantum computing using photonic quantum emitters.
We exploit spin-photon entanglement as resource states and standard Bell measurements of photons for fusing them into a large spin-qubit cluster state.
arXiv Detail & Related papers (2023-04-07T18:00:25Z) - An integrated photonic engine for programmable atomic control [29.81784450632149]
Miniaturization of optical components has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices.
We propose and implement a scalable and reconfigurable photonic architecture for multi-channel quantum control using integrated, visible-light modulators.
arXiv Detail & Related papers (2022-08-13T21:12:37Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Quantum nonlinear optics based on two-dimensional Rydberg atom arrays [0.0]
We explore the combination of sub-wavelength, two-dimensional atomic arrays and Rydberg interactions as a powerful platform to realize strong, coherent interactions.
We show that such a system enables a coherent photon-photon gate or switch, with an error scaling significantly better than the best known scaling in a disordered ensemble.
Although this a priori represents a complicated, many-body quantum driven dissipative system, we find that the behavior can be captured well by a semi-classical model.
arXiv Detail & Related papers (2021-01-06T09:28:32Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.