論文の概要: Explainable Artificial Intelligence for Assault Sentence Prediction in
New Zealand
- arxiv url: http://arxiv.org/abs/2208.06981v1
- Date: Mon, 15 Aug 2022 02:52:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-16 12:57:56.105671
- Title: Explainable Artificial Intelligence for Assault Sentence Prediction in
New Zealand
- Title(参考訳): ニュージーランドにおける暴行判決予測のための説明可能な人工知能
- Authors: Harry Rodger, Andrew Lensen, Marcin Betkier
- Abstract要約: 本稿では,ニュージーランドの裁判所における暴行事件における収監判決の予測に,説明可能な人工知能の活用の可能性について検討する。
本稿では,概念実証モデルを提案するとともに,予測文が1年以内の精度で目的に適したことを実証する。
本論文は,ニュージーランドの裁判所において,このようなAIモデルを使用するさまざまな方法の今後のメリットとリスクについて,評価的な議論で締めくくった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The judiciary has historically been conservative in its use of Artificial
Intelligence, but recent advances in machine learning have prompted scholars to
reconsider such use in tasks like sentence prediction. This paper investigates
by experimentation the potential use of explainable artificial intelligence for
predicting imprisonment sentences in assault cases in New Zealand's courts. We
propose a proof-of-concept explainable model and verify in practice that it is
fit for purpose, with predicted sentences accurate to within one year. We
further analyse the model to understand the most influential phrases in
sentence length prediction. We conclude the paper with an evaluative discussion
of the future benefits and risks of different ways of using such an AI model in
New Zealand's courts.
- Abstract(参考訳): 司法は歴史的に人工知能の使用に保守的だったが、近年の機械学習の進歩により、学者は文章の予測のようなタスクでの使用を再考するに至った。
本稿では、ニュージーランドの裁判所における暴行事件における刑罰の予測に、説明可能な人工知能の潜在的利用を実験的に検討する。
本稿では,概念実証可能なモデルを提案し,予測文が1年以内の精度で目的に適したことを実証する。
さらに、文長予測において最も影響力のあるフレーズを理解するためにモデルを解析する。
本論文は,ニュージーランドの裁判所において,このようなAIモデルを使用するさまざまな方法の今後のメリットとリスクについて,評価的な議論で締めくくった。
関連論文リスト
- Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
我々は、前例が法的NLPモデルの説明可能性を促進する自然な方法であると主張している。
法的な先例の分類法を開発することで、人間の判断と神経モデルを比較することができる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
論文 参考訳(メタデータ) (2024-03-25T15:15:41Z) - Why can neural language models solve next-word prediction? A
mathematical perspective [53.807657273043446]
本研究では,英語文の実例をモデル化するための形式言語群について検討する。
我々の証明は、ニューラルネットワークモデルにおける埋め込み層と完全に接続されたコンポーネントの異なる役割を強調します。
論文 参考訳(メタデータ) (2023-06-20T10:41:23Z) - Rationalizing Predictions by Adversarial Information Calibration [65.19407304154177]
我々は2つのモデルを共同で訓練する: 1つは、正確だがブラックボックスな方法でタスクを解く典型的なニューラルモデルであり、もう1つは、予測の理論的根拠を付加するセレクタ・予測モデルである。
我々は,2つのモデルから抽出した情報を,それらの違いが欠落した特徴や過度に選択された特徴の指標であるように校正するために,敵対的手法を用いる。
論文 参考訳(メタデータ) (2023-01-15T03:13:09Z) - Do Charge Prediction Models Learn Legal Theory? [59.74220430434435]
我々は、信頼できる電荷予測モデルが法的理論を考慮に入れるべきであると主張している。
本稿では,この課題に従わなければならない信頼に値するモデルの3つの原則を提案する。
以上の結果から,既存の電荷予測モデルはベンチマークデータセットの選択的原理に合致するが,そのほとんどが十分な感度が得られず,無害の予測を満たさないことが示唆された。
論文 参考訳(メタデータ) (2022-10-31T07:32:12Z) - Using attention methods to predict judicial outcomes [0.0]
私たちは、ブラジルの法体系における司法結果を予測するためにAI分類器を使用しました。
これらのテキストは、第二級殺人と活発な汚職事件のデータセットを形成した。
我々の研究では、回帰木、Gated Recurring Units、階層的注意ネットワークが、異なるサブセットに対してより高いメトリクスを示しました。
論文 参考訳(メタデータ) (2022-07-18T16:24:34Z) - Visual Abductive Reasoning [85.17040703205608]
帰納的推論は、部分的な観察の可能な限りの可能な説明を求める。
本稿では,日常的な視覚的状況下でのマシンインテリジェンスの帰納的推論能力を調べるために,新たなタスクとデータセットであるVisual Abductive Reasoning(VAR)を提案する。
論文 参考訳(メタデータ) (2022-03-26T10:17:03Z) - Discovering Explanatory Sentences in Legal Case Decisions Using
Pre-trained Language Models [0.7614628596146599]
法的テキストは理解が難しい概念を常用する。
弁護士は、過去にどのように使われてきたのかを注意深く調べることで、そのような概念の意味を詳しく説明している。
特定の概念に便利な方法で言及するテキストスニペットを見つけるのは退屈で、時間がかかるため、コストがかかる。
論文 参考訳(メタデータ) (2021-12-14T04:56:39Z) - JUSTICE: A Benchmark Dataset for Supreme Court's Judgment Prediction [0.0]
我々は、自然言語処理(NLP)研究やその他のデータ駆動アプリケーションで容易に利用できるように、SCOTUS裁判所の高品質なデータセットを作成することを目指している。
先進的なNLPアルゴリズムを用いて以前の訴訟を分析することにより、訓練されたモデルは裁判所の判断を予測し、分類することができる。
論文 参考訳(メタデータ) (2021-12-06T23:19:08Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
LJP(Lawal Judgment Prediction)は、その事実を記述したテキストが与えられた場合、訴訟の判断結果を自動的に予測するタスクである。
LJP の課題を解決するために,エンド・ツー・エンドのモデル LADAN を提案する。
論文 参考訳(メタデータ) (2020-04-06T11:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。