論文の概要: Distinguish Confusing Law Articles for Legal Judgment Prediction
- arxiv url: http://arxiv.org/abs/2004.02557v3
- Date: Thu, 23 Apr 2020 13:20:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 05:36:31.767353
- Title: Distinguish Confusing Law Articles for Legal Judgment Prediction
- Title(参考訳): 法的判断予測のための紛らわしい法律記事の区別
- Authors: Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan Wang, Junzhou Zhao
- Abstract要約: LJP(Lawal Judgment Prediction)は、その事実を記述したテキストが与えられた場合、訴訟の判断結果を自動的に予測するタスクである。
LJP の課題を解決するために,エンド・ツー・エンドのモデル LADAN を提案する。
- 参考スコア(独自算出の注目度): 30.083642130015317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legal Judgment Prediction (LJP) is the task of automatically predicting a law
case's judgment results given a text describing its facts, which has excellent
prospects in judicial assistance systems and convenient services for the
public. In practice, confusing charges are frequent, because law cases
applicable to similar law articles are easily misjudged. For addressing this
issue, the existing method relies heavily on domain experts, which hinders its
application in different law systems. In this paper, we present an end-to-end
model, LADAN, to solve the task of LJP. To distinguish confusing charges, we
propose a novel graph neural network to automatically learn subtle differences
between confusing law articles and design a novel attention mechanism that
fully exploits the learned differences to extract compelling discriminative
features from fact descriptions attentively. Experiments conducted on
real-world datasets demonstrate the superiority of our LADAN.
- Abstract(参考訳): 法的判断予測(英: legal judgment prediction、ljp)とは、訴訟の事実を記述したテキストから判断結果を自動的に予測する作業であり、司法支援システムや一般向けの便利なサービスにおいて優れた可能性を持っている。
実際には、類似の法律に適用される訴訟は容易に誤解されるため、混乱する告発が頻繁に行われる。
この問題に対処するため、既存の手法はドメインの専門家に大きく依存しており、異なる法体系における適用を妨げる。
本稿では, LJP の課題を解決するために, エンドツーエンドモデル LADAN を提案する。
そこで本研究では, 規則記事間の微妙な差異を自動的に学習し, 学習した差異を十分に活用し, 事実記述から説得力のある特徴を抽出する新しい注意機構を設計するグラフニューラルネットワークを提案する。
実世界のデータセットで行った実験は、我々のLADNの優位性を示している。
関連論文リスト
- Distinguish Confusion in Legal Judgment Prediction via Revised Relation Knowledge [38.58529647679356]
法的判断予測は,その事実のテキスト記述に基づいて,訴訟の判断結果を自動的に予測することを目的としている。
紛らわしい法律記事(または告訴)の問題は頻繁に発生し、類似記事(または告訴)に該当する法ケースが誤認される傾向があることを反映している。
本稿では、上記の課題を解決するために、textitD-LADAN というエンドツーエンドモデルを提案する。
論文 参考訳(メタデータ) (2024-08-18T09:44:59Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
人間の推論に触発されたAsk-Discriminate-Predict(ADAPT)推論フレームワークを紹介する。
ADAPTは、ケース事実を分解し、潜在的な電荷を識別し、最終的な判断を予測する。
広く利用されている2つのデータセットに対して行われた実験は、法的な判断予測において、我々のフレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-02T05:43:15Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
本論文では,LInCo(Legal Inconsistency Coefficient)の判定不整合性評価指標を提案する。
法的な判断予測(LJP)モデルを用いて異なる集団の裁判官をシミュレートし、異なる集団で訓練されたLJPモデルによる判断結果の不一致を判断する。
私達はLInCoを実際の場合の不一致を探検するために使用し、次の観察に来ます:(1)地域およびジェンダーの不一致は法制度でありますが、ジェンダーの不一致は地方不一致より大いにより少しです。
論文 参考訳(メタデータ) (2021-03-25T14:28:00Z) - Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning [0.0]
法的判断予測は、法律の理論と実践において、長くかつオープンなトピックである。
訴訟や司法行動を予測する様々な方法や技法が、長年にわたって出現してきた。
AI法則推論の出現は、LJPの実行方法とその予測精度に顕著な影響を与える。
論文 参考訳(メタデータ) (2020-09-29T00:12:42Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。