論文の概要: A Hybrid Approach on Conditional GAN for Portfolio Analysis
- arxiv url: http://arxiv.org/abs/2208.07159v1
- Date: Wed, 13 Jul 2022 00:58:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-05 06:41:37.830350
- Title: A Hybrid Approach on Conditional GAN for Portfolio Analysis
- Title(参考訳): ポートフォリオ解析のための条件付きGANのハイブリッドアプローチ
- Authors: Jun Lu, Danny Ding
- Abstract要約: 市場不確実性や今後のトレンドをモデル化しながら、歴史的データの内部トレンドを学習する深層生成モデルに基づく条件付きGANのハイブリッドアプローチを提案する。
提案したHybridCGANモデルとHybridACGANモデルは,既存のMarkowitz,CGAN,ACGANアプローチと比較して,ポートフォリオ割り当てが優れていることを示す。
- 参考スコア(独自算出の注目度): 4.913248451323163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the decades, the Markowitz framework has been used extensively in
portfolio analysis though it puts too much emphasis on the analysis of the
market uncertainty rather than on the trend prediction. While generative
adversarial network (GAN), conditional GAN (CGAN), and autoencoding CGAN
(ACGAN) have been explored to generate financial time series and extract
features that can help portfolio analysis. The limitation of the CGAN or ACGAN
framework stands in putting too much emphasis on generating series and finding
the internal trends of the series rather than predicting the future trends. In
this paper, we introduce a hybrid approach on conditional GAN based on deep
generative models that learns the internal trend of historical data while
modeling market uncertainty and future trends. We evaluate the model on several
real-world datasets from both the US and Europe markets, and show that the
proposed HybridCGAN and HybridACGAN models lead to better portfolio allocation
compared to the existing Markowitz, CGAN, and ACGAN approaches.
- Abstract(参考訳): 数十年にわたって、markowitzフレームワークはポートフォリオ分析で広く使われてきたが、トレンド予測よりも市場の不確実性の分析に重点を置いている。
ジェネレーティブ・逆境ネットワーク(GAN)、条件付きGAN(CGAN)、自動符号化CGAN(ACGAN)は、金融時系列を生成し、ポートフォリオ分析に役立つ特徴を抽出するために研究されている。
CGAN や ACGAN フレームワークの制限は、将来のトレンドを予測するのではなく、シリーズの生成とシリーズの内部トレンドを見つけることに重点を置いている。
本稿では,市場不確実性と今後の傾向をモデル化しながら,歴史データの内部傾向を学習する深層生成モデルに基づく条件付きganのハイブリッドアプローチを提案する。
提案したHybridCGANモデルとHybridACGANモデルが,既存のMarkowitz,CGAN,ACGANアプローチと比較してポートフォリオアロケーションを改善することを示す。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Dynamic graph neural networks for enhanced volatility prediction in financial markets [0.0]
本稿では,グローバル金融市場を動的グラフとして表現するために,グラフニューラルネットワーク(GNN)を用いた新たなアプローチを提案する。
相関に基づくボラティリティ指標とボラティリティ指標を利用することで、テンポラルGATは、ボラティリティ予測の精度を高める有向グラフを構成する。
論文 参考訳(メタデータ) (2024-10-22T09:52:15Z) - Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks [4.2056926734482065]
これはリスクの高い企業を取り入れ、ポートフォリオの最適化に全企業を使う最初の研究だ。
グラフ注意ネットワーク(GAT)を利用した新しい手法の提案と実証試験を行った。
GATは、ネットワークデータを利用して非線形関係を明らかにするディープラーニングベースのモデルである。
論文 参考訳(メタデータ) (2024-07-22T10:50:47Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Deep Generative Modeling for Financial Time Series with Application in
VaR: A Comparative Review [22.52651841623703]
ヒストリカル・シミュレーション(HS)は、翌日にリスクファクターの予測分布が戻ると、ヒストリカル・ウィンドウにおける日々のリターンの実証的な分布を利用する。
HS, GARCH および CWGAN モデルは, 歴史的USD 収率曲線データと GARCH および CIR プロセスからシミュレーションした追加データの両方で試験される。
研究によると、トップパフォーマンスモデルはHS、GARCH、CWGANモデルである。
論文 参考訳(メタデータ) (2024-01-18T20:35:32Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Autoencoding Conditional GAN for Portfolio Allocation Diversification [4.913248451323163]
本稿では,歴史的データの内部傾向を学習する深層生成モデルに基づく自動符号化CGAN(ACGAN)を提案する。
本モデルは,米国と欧州の両市場における実世界のデータセットを用いて評価した。
論文 参考訳(メタデータ) (2022-06-17T04:15:41Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC
market [62.997667081978825]
EPEC市場におけるエネルギースポット価格予測のためのハイブリッドモデリング手法について検討する。
データは2013-2014年の電力価格、2015年のテストデータで提供された。
論文 参考訳(メタデータ) (2020-10-14T12:45:53Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。