論文の概要: Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets
- arxiv url: http://arxiv.org/abs/2307.08649v1
- Date: Thu, 1 Jun 2023 01:36:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 17:26:31.435841
- Title: Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets
- Title(参考訳): 金融市場における潜在トピック発見と期待モデリング
- Authors: Lili Wang, Chenghan Huang, Chongyang Gao, Weicheng Ma, and Soroush
Vosoughi
- Abstract要約: 金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
- 参考スコア(独自算出の注目度): 45.758436505779386
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the pursuit of accurate and scalable quantitative methods for financial
market analysis, the focus has shifted from individual stock models to those
capturing interrelations between companies and their stocks. However, current
relational stock methods are limited by their reliance on predefined stock
relationships and the exclusive consideration of immediate effects. To address
these limitations, we present a groundbreaking framework for financial market
analysis. This approach, to our knowledge, is the first to jointly model
investor expectations and automatically mine latent stock relationships.
Comprehensive experiments conducted on China's CSI 300, one of the world's
largest markets, demonstrate that our model consistently achieves an annual
return exceeding 10%. This performance surpasses existing benchmarks, setting a
new state-of-the-art standard in stock return prediction and multiyear trading
simulations (i.e., backtesting).
- Abstract(参考訳): 金融市場分析のための正確でスケーラブルな定量的手法の追求により、個々の株式モデルから企業と株式の相互関係を捉えるモデルへと焦点が移っている。
しかし、現在のリレーショナル・ストックの手法は、事前に定義された株式関係に依存することと、即時効果の排他的考慮によって制限されている。
これらの制限に対処するため、金融市場分析のための画期的な枠組みを提案する。
このアプローチは、私たちの知る限り、投資家の期待を共同でモデル化し、潜在株式関係を自動的に掘り下げる最初のものです。
世界最大の市場の一つである中国のCSI300で実施された総合的な実験は、我々のモデルが一貫して10%を超えるリターンを達成していることを示している。
このパフォーマンスは既存のベンチマークを上回り、ストックリターン予測と複数年のトレーディングシミュレーション(バックテスト)に最先端の標準を新たに設定する。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Predicting Stock Prices with FinBERT-LSTM: Integrating News Sentiment Analysis [2.7921137693344384]
我々は、株価の歴史と金融、ビジネス、技術ニュースに基づくディープラーニングネットワークを使用し、株価を予測するために市場情報を導入しています。
我々はファイナンシャルテキスト中の感情を識別するために、FinBERTとして知られる事前学習NLPモデルを開発した。
このモデルは、市場構造階層、すなわち、市場、産業、および株価関連ニュースカテゴリに関するニュースカテゴリと、前週の株式市場の株価状況を組み合わせて予測する。
論文 参考訳(メタデータ) (2024-07-23T03:26:07Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Stock Market Price Prediction: A Hybrid LSTM and Sequential
Self-Attention based Approach [3.8154633976469086]
LSTM-SSAM(Sequential Self-Attention Mechanism)を用いたLong Short-Term Memory(LSTM)というモデルを提案する。
SBIN,BANK,BANKBARODAの3つのストックデータセットについて広範な実験を行った。
実験により,既存のモデルと比較して,提案モデルの有効性と妥当性が示された。
論文 参考訳(メタデータ) (2023-08-07T14:21:05Z) - Univariate and Multivariate LSTM Model for Short-Term Stock Market
Prediction [1.6114012813668934]
本稿では,インド企業2社の短期株価予測のための2つの異なる入力アプローチを持つLSTMモデルを提案する。
10年間の歴史的データ(2012-2021)を,ヤフー金融のウェブサイトから抽出し,提案手法の分析を行った。
論文 参考訳(メタデータ) (2022-05-08T07:01:12Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Uncertainty-Aware Lookahead Factor Models for Quantitative Investing [25.556824322478935]
最初にシミュレーションを通して、将来の基本に基づいて計算された要因によって株式を選択することができれば、ポートフォリオは標準因子モデルよりもはるかに優れていることを示します。
本稿では、これらの予測された未来基本を従来の要因にプラグインするルックアヘッドファクターモデルを提案する。
振り返り分析では、業界レベルのポートフォリオシミュレータを活用し、年次リターンとシャープ比の同時改善を示す。
論文 参考訳(メタデータ) (2020-07-07T00:18:40Z) - Predictive intraday correlations in stable and volatile market
environments: Evidence from deep learning [2.741266294612776]
我々は、S&P500株間のラタグ相関を学習・活用するためにディープラーニングを適用し、安定市場と不安定市場のモデル行動を比較する。
以上の結果から,アキュラシーは有意でありながら,予測地平線が短いほど低下することが示唆された。
ポートフォリオマネージャのための調査ツールとしての現代金融理論と作業の適用性について論じる。
論文 参考訳(メタデータ) (2020-02-24T17:19:54Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。