A Human-in-the-Middle Attack against Object Detection Systems
- URL: http://arxiv.org/abs/2208.07174v4
- Date: Thu, 11 Jul 2024 08:07:03 GMT
- Title: A Human-in-the-Middle Attack against Object Detection Systems
- Authors: Han Wu, Sareh Rowlands, Johan Wahlstrom,
- Abstract summary: We propose a novel hardware attack inspired by Man-in-the-Middle attacks in cryptography.
This attack generates a Universal Adversarial Perturbations (UAP) and injects the perturbation between the USB camera and the detection system.
These findings raise serious concerns for applications of deep learning models in safety-critical systems, such as autonomous driving.
- Score: 4.764637544913963
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Object detection systems using deep learning models have become increasingly popular in robotics thanks to the rising power of CPUs and GPUs in embedded systems. However, these models are susceptible to adversarial attacks. While some attacks are limited by strict assumptions on access to the detection system, we propose a novel hardware attack inspired by Man-in-the-Middle attacks in cryptography. This attack generates a Universal Adversarial Perturbations (UAP) and injects the perturbation between the USB camera and the detection system via a hardware attack. Besides, prior research is misled by an evaluation metric that measures the model accuracy rather than the attack performance. In combination with our proposed evaluation metrics, we significantly increased the strength of adversarial perturbations. These findings raise serious concerns for applications of deep learning models in safety-critical systems, such as autonomous driving.
Related papers
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
imitation attacks can lead to erroneous identification and subsequent authentication of attackers.
Similar to face recognition, imitation attacks can also be detected with Machine Learning.
We propose a novel approach that promises high classification accuracy by combining previously unused features with time-aware deep learning strategies.
arXiv Detail & Related papers (2024-08-27T07:26:10Z) - Principles of Designing Robust Remote Face Anti-Spoofing Systems [60.05766968805833]
This paper sheds light on the vulnerabilities of state-of-the-art face anti-spoofing methods against digital attacks.
It presents a comprehensive taxonomy of common threats encountered in face anti-spoofing systems.
arXiv Detail & Related papers (2024-06-06T02:05:35Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
This study proposes a model for generating synthetic data of multi-stage cyber attacks in the power grid.
It uses attack trees to model the attacker's sequence of steps and a game-theoretic approach to incorporate the defender's actions.
arXiv Detail & Related papers (2023-12-21T09:54:18Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
We propose a novel learning framework, RobustSense, to defend common adversarial attacks.
Our method works well on wireless human activity recognition and person identification systems.
arXiv Detail & Related papers (2022-04-04T15:06:03Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Launching Adversarial Attacks against Network Intrusion Detection
Systems for IoT [5.077661193116692]
Technology is shifting towards a profit-driven Internet of Things market where security is an afterthought.
Traditional defending approaches are no longer sufficient to detect both known and unknown attacks to high accuracy.
Machine learning intrusion detection systems have proven their success in identifying unknown attacks with high precision.
arXiv Detail & Related papers (2021-04-26T09:36:29Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
More and more malicious attackers attempt to launch adversarial attacks at automatic speaker verification (ASV) systems.
We propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations.
Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks.
arXiv Detail & Related papers (2021-02-14T01:56:43Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
Deep neural networks, which form the basis of such systems, are highly susceptible to a specific type of attack, called adversarial attacks.
A hacker can, even with bare minimum computation, generate adversarial examples (images or data points that belong to another class, but consistently fool the model to get misclassified as genuine) and crumble the basis of such algorithms.
We show two effective techniques, namely Dropout and Denoising Autoencoders, and show their success in preventing such attacks from fooling the model.
arXiv Detail & Related papers (2020-12-10T09:34:41Z) - Adversarial Attacks on Machine Learning Cybersecurity Defences in
Industrial Control Systems [2.86989372262348]
This paper explores how adversarial learning can be used to target supervised models by generating adversarial samples.
It also explores how such samples can support the robustness of supervised models using adversarial training.
Overall, the classification performance of two widely used classifiers, Random Forest and J48, decreased by 16 and 20 percentage points when adversarial samples were present.
arXiv Detail & Related papers (2020-04-10T12:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.