Principles of Designing Robust Remote Face Anti-Spoofing Systems
- URL: http://arxiv.org/abs/2406.03684v1
- Date: Thu, 6 Jun 2024 02:05:35 GMT
- Title: Principles of Designing Robust Remote Face Anti-Spoofing Systems
- Authors: Xiang Xu, Tianchen Zhao, Zheng Zhang, Zhihua Li, Jon Wu, Alessandro Achille, Mani Srivastava,
- Abstract summary: This paper sheds light on the vulnerabilities of state-of-the-art face anti-spoofing methods against digital attacks.
It presents a comprehensive taxonomy of common threats encountered in face anti-spoofing systems.
- Score: 60.05766968805833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Protecting digital identities of human face from various attack vectors is paramount, and face anti-spoofing plays a crucial role in this endeavor. Current approaches primarily focus on detecting spoofing attempts within individual frames to detect presentation attacks. However, the emergence of hyper-realistic generative models capable of real-time operation has heightened the risk of digitally generated attacks. In light of these evolving threats, this paper aims to address two key aspects. First, it sheds light on the vulnerabilities of state-of-the-art face anti-spoofing methods against digital attacks. Second, it presents a comprehensive taxonomy of common threats encountered in face anti-spoofing systems. Through a series of experiments, we demonstrate the limitations of current face anti-spoofing detection techniques and their failure to generalize to novel digital attack scenarios. Notably, the existing models struggle with digital injection attacks including adversarial noise, realistic deepfake attacks, and digital replay attacks. To aid in the design and implementation of robust face anti-spoofing systems resilient to these emerging vulnerabilities, the paper proposes key design principles from model accuracy and robustness to pipeline robustness and even platform robustness. Especially, we suggest to implement the proactive face anti-spoofing system using active sensors to significant reduce the risks for unseen attack vectors and improve the user experience.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Poisoned Forgery Face: Towards Backdoor Attacks on Face Forgery
Detection [62.595450266262645]
This paper introduces a novel and previously unrecognized threat in face forgery detection scenarios caused by backdoor attack.
By embedding backdoors into models, attackers can deceive detectors into producing erroneous predictions for forged faces.
We propose emphPoisoned Forgery Face framework, which enables clean-label backdoor attacks on face forgery detectors.
arXiv Detail & Related papers (2024-02-18T06:31:05Z) - Detecting Adversarial Faces Using Only Real Face Self-Perturbations [36.26178169550577]
Adrial attacks aim to disturb the functionality of a target system by adding specific noise to the input samples.
Existing defense techniques achieve high accuracy in detecting some specific adversarial faces (adv-faces)
New attack methods especially GAN-based attacks with completely different noise patterns circumvent them and reach a higher attack success rate.
arXiv Detail & Related papers (2023-04-22T09:55:48Z) - A Random-patch based Defense Strategy Against Physical Attacks for Face
Recognition Systems [3.6202815454709536]
We propose a random-patch based defense strategy to robustly detect physical attacks for Face Recognition System (FRS)
Our method can be easily applied to the real world face recognition system and extended to other defense methods to boost the detection performance.
arXiv Detail & Related papers (2023-04-16T16:11:56Z) - Face Presentation Attack Detection [59.05779913403134]
Face recognition technology has been widely used in daily interactive applications such as checking-in and mobile payment.
However, its vulnerability to presentation attacks (PAs) limits its reliable use in ultra-secure applicational scenarios.
arXiv Detail & Related papers (2022-12-07T14:51:17Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
We propose a novel learning framework, RobustSense, to defend common adversarial attacks.
Our method works well on wireless human activity recognition and person identification systems.
arXiv Detail & Related papers (2022-04-04T15:06:03Z) - Initiative Defense against Facial Manipulation [82.96864888025797]
We propose a novel framework of initiative defense to degrade the performance of facial manipulation models controlled by malicious users.
We first imitate the target manipulation model with a surrogate model, and then devise a poison perturbation generator to obtain the desired venom.
arXiv Detail & Related papers (2021-12-19T09:42:28Z) - Adversarial Light Projection Attacks on Face Recognition Systems: A
Feasibility Study [21.42041262836322]
We investigate the feasibility of conducting real-time physical attacks on face recognition systems using adversarial light projections.
The adversary generates a digital adversarial pattern using one or more images of the target available to the adversary.
The digital adversarial pattern is then projected onto the adversary's face in the physical domain to either impersonate a target (impersonation) or evade recognition (obfuscation)
arXiv Detail & Related papers (2020-03-24T23:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.